Conditional filters for image sequence-based tracking - application to point tracking

A new conditional formulation of classical filtering methods is proposed. This formulation is dedicated to image sequence-based tracking. These conditional filters allow solving systems whose measurements and state equation are estimated from the image data. In particular, the model that is considered for point tracking combines a state equation relying on the optical flow constraint and measurements provided by a matching technique. Based on this, two point trackers are derived. The first one is a linear tracker well suited to image sequences exhibiting global-dominant motion. This filter is determined through the use of a new estimator, called the conditional linear minimum variance estimator. The second one is a nonlinear tracker, implemented from a conditional particle filter. It allows tracking of points whose motion may be only locally described. These conditional trackers significantly improve results in some general situations. In particular, they allow for dealing with noisy sequences, abrupt changes of trajectories, occlusions, and cluttered background.

[1]  M. E. Welch,et al.  Bayesian analysis of time series and dynamic models , 1990 .

[2]  David J. Fleet,et al.  Stochastic Tracking of 3D Human Figures Using 2D Image Motion , 2000, ECCV.

[3]  David J. Fleet,et al.  Stochastic Tracking of 3 D Human Figures Using 2 D Image Motion , 2000 .

[4]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[5]  BlakeAndrew,et al.  C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .

[6]  S. P. McKenna,et al.  Performance of digital image velocimetry processing techniques , 2002 .

[7]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[10]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Peter Allen,et al.  Image-flow computation: An estimation-theoretic framework and a unified perspective , 1992, CVGIP Image Underst..

[12]  Lorenzo Torresani,et al.  Space-Time Tracking , 2002, ECCV.

[13]  François Chaumette,et al.  Model-free optimal trajectories in the image space: application to robot vision control , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[14]  Stefano Soatto,et al.  Real-Time Feature Tracking and Outlier Rejection with Changes in Illumination , 2001, ICCV.

[15]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[16]  Jean-Marc Odobez,et al.  MRF-based motion segmentation exploiting a 2D motion model robust estimation , 1995, Proceedings., International Conference on Image Processing.

[17]  Kevin Nickels,et al.  Estimating uncertainty in SSD-based feature tracking , 2002, Image Vis. Comput..

[18]  Peter F. Sturm Structure and Motion for Dynamic Scenes - The Case of Points Moving in Planes , 2002, ECCV.

[19]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[20]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[21]  F. Jay Breidt,et al.  Highest density gates for target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[22]  Y. Bar-Shalom Tracking and data association , 1988 .

[23]  P. Anandan Measuring Visual Motion From Image Sequences , 1987 .

[24]  M. Worring,et al.  Occlusion robust adaptive template tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[26]  Michael J. Black,et al.  A Probabilistic Framework for Matching Temporal Trajectories: CONDENSATION-Based Recognition of Gestures and Expressions , 1998, ECCV.

[27]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[28]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[29]  Michal Irani,et al.  Computing occluding and transparent motions , 1994, International Journal of Computer Vision.

[30]  Michael Isard,et al.  A mixed-state condensation tracker with automatic model-switching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[31]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[32]  Emanuele Trucco,et al.  Making good features track better , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[33]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[34]  Michael J. Black,et al.  Implicit Probabilistic Models of Human Motion for Synthesis and Tracking , 2002, ECCV.

[35]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[36]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[37]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[38]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[39]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[40]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[41]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.