Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator.

We characterize the performance of a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS) resonator. The strongest resonance of the PCS is designed to coincide with the absorption peak frequency at 7.6 µm of the QWIP. To accurately characterize the detector performance, it is illuminated by using single mode mid-infrared lasers. The strong resonant absorption enhancement yields a detectivity increase of up to 20 times. This enhancement is a combined effect of increased responsivity and noise current reduction. With increasing temperature, we observe a red shift of the PCS-QWIP resonance peak of -0.055 cm(-1)/K. We attribute this effect to a refractive index change and present a model based on the revised plane wave method.

[1]  Martin Walther,et al.  QWIP FPAs for high-performance thermal imaging , 2000 .

[2]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[3]  Kazuaki Sakoda,et al.  Dispersion relation and optical transmittance of a hexagonal photonic crystal slab , 2001 .

[4]  Werner Schrenk,et al.  Photonic crystal slab quantum well infrared photodetector , 2011 .

[5]  Dennis W. Prather,et al.  Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs , 2005 .

[6]  T. L. Myers,et al.  Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .

[7]  J. Ahopelto,et al.  Enhanced optical properties of in situ passivated near‐surface AlxGa1−xAs/GaAs quantum wells , 1996 .

[8]  P. Klang,et al.  Electrical beam steering of Y-coupled quantum cascade lasers , 2010 .

[9]  Antoni Rogalski,et al.  Quantum well photoconductors in infrared detector technology , 2003 .

[10]  Sang Jun Lee,et al.  A monolithically integrated plasmonic infrared quantum dot camera. , 2011, Nature communications.

[11]  Frank K. Tittel,et al.  Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser , 2004 .

[12]  Werner Schrenk,et al.  Low divergence single-mode surface emitting quantum cascade ring lasers , 2008 .

[13]  Manijeh Razeghi,et al.  High power quantum cascade lasers , 2009 .

[14]  Werner Schrenk,et al.  Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP , 2009 .

[15]  Manijeh Razeghi,et al.  Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ∼4.36 μm , 2010 .

[16]  Werner Schrenk,et al.  Band structure mapping of photonic crystal intersubband detectors , 2006 .

[17]  Werner Schrenk,et al.  Higher order modes in photonic crystal slabs. , 2011, Optics express.

[18]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[19]  Hooman Mohseni,et al.  Plasmonic enhanced quantum well infrared photodetector with high detectivity , 2010 .

[20]  S. Noda,et al.  On-chip beam-steering photonic-crystal lasers , 2010 .

[21]  Werner Schrenk,et al.  Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors , 2009 .

[22]  Yia-Chung Chang,et al.  Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array☆ , 2007 .

[23]  J. Y. Andersson,et al.  Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler , 1991 .

[24]  Chong Hu,et al.  Design Consideration and Demonstration of Resonant-Cavity-Enhanced Quantum Dot Infrared Photodetectors in Mid-Infrared Wavelength Regime (3–5 $\mu{\rm m}$ ) , 2010, IEEE Journal of Quantum Electronics.