A computational geometry approach to Web personalization

In this paper we present an algorithm for efficient personalized clustering. The algorithm combines the orthogonal range search with the k-windows algorithm. It offers a real-time solution for the delivery of personalized services in online shopping environments, since it allows on-line consumers to model their preferences along multiple dimensions, search for product information, and then use the clustered list of products and services retrieved for making their purchase decisions.

[1]  Ben Shneiderman,et al.  Identifying aggregates in hypertext structures , 1991, HYPERTEXT '91.

[2]  Anil K. Jain,et al.  Clustering Methodologies in Exploratory Data Analysis , 1980, Adv. Comput..

[3]  Peter Brusilovsky,et al.  Adaptive Hypermedia , 2001, User Modeling and User-Adapted Interaction.

[4]  Dan E. Willard,et al.  New Data Structures for Orthogonal Range Queries , 1985, SIAM J. Comput..

[5]  Ramana Rao,et al.  Silk from a sow's ear: extracting usable structures from the Web , 1996, CHI.

[6]  Vijay K. Vaishnavi,et al.  Computing Point Enclosures , 1982, IEEE Transactions on Computers.

[7]  Peter Brusilovsky,et al.  Methods and techniques of adaptive hypermedia , 1996, User Modeling and User-Adapted Interaction.

[8]  Rodrigo A. Botafogo Cluster analysis for hypertext systems , 1993, SIGIR.

[9]  Surithong Srisa‐ard,et al.  Mining the Web: Discovering Knowledge from Hypertext Data , 2003 .

[10]  Valerie J. Trifts,et al.  Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids , 2000 .

[11]  Edie M. Rasmussen,et al.  Clustering Algorithms , 1992, Information Retrieval: Data Structures & Algorithms.

[12]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[13]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[14]  Michael N. Vrahatis,et al.  The New k-Windows Algorithm for Improving the k-Means Clustering Algorithm , 2002, J. Complex..

[15]  Georgios P. Papamichail,et al.  Towards using computational methods for real-time negotiations in electronic commerce , 2003, Eur. J. Oper. Res..

[16]  W. Scott Spangler,et al.  Clustering hypertext with applications to web searching , 2000, HYPERTEXT '00.

[17]  Dimitris K. Tasoulis,et al.  Improving the orthogonal range search k-windows algorithm , 2002, 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings..

[18]  Soumen Chakrabarti,et al.  Mining the web - discovering knowledge from hypertext data , 2002 .