The phage display technique: advantages and recent patents.

Phage display technology has advanced considerably since its creation, and the number of research projects using this technique is constantly increasing, generating numerous antibody and antigen libraries. These libraries, besides expediting library screening, improving selection methods and allowing evaluation of novel applications, have great potential for the development of new vaccines, drugs and diagnosis tests. Consequently, patent registries for the protection of these sequences are essential.

[1]  M. Arap Phage display technology: applications and innovations , 2005 .

[2]  S. Rüdiger,et al.  Expressed protein ligation for a large dimeric protein. , 2011, Protein engineering, design & selection : PEDS.

[3]  H. Hoogenboom Overview of antibody phage-display technology and its applications. , 2002, Methods in molecular biology.

[4]  L. Castagnoli,et al.  Protein Interaction Networks by Proteome Peptide Scanning , 2004, PLoS biology.

[5]  J. Giglio,et al.  Expression of recombinant human antibody fragments capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. , 2006, Biochimica et biophysica acta.

[6]  José M González-Buitrago,et al.  Present and future of the autoimmunity laboratory. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[7]  S. Sidhu,et al.  Engineering M13 for phage display. , 2001, Biomolecular engineering.

[8]  M. Zatz,et al.  Calpains and disease. , 2005, The New England journal of medicine.

[9]  Wei Li,et al.  Identification of Calpain Substrates by ORF Phage Display , 2011, Molecules.

[10]  F. Felici,et al.  Display libraries on bacteriophage lambda capsid. , 2005, Biotechnology annual review.

[11]  B. Kay,et al.  Filamentous phage display in the new millennium. , 2005, Chemical reviews.

[12]  F. Felici,et al.  Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. , 1991, Journal of molecular biology.

[13]  Hiroshi Yanagawa,et al.  DNA display for in vitro selection of diverse peptide libraries. , 2003, Nucleic acids research.

[14]  S. Avrameas,et al.  Natural autoantibodies: from 'horror autotoxicus' to 'gnothi seauton'. , 1991, Immunology today.

[15]  H. Rochat,et al.  Engineering of a recombinant Fab from a neutralizing IgG directed against scorpion neurotoxin AahI, and functional evaluation versus other antibody fragments. , 2004, Toxicon : official journal of the International Society on Toxinology.

[16]  R. Kontermann,et al.  Recombinant bispecific antibodies for the targeting of adenoviruses to CEA‐expressing tumour cells: a comparative analysis of bacterially expressed single‐chain diabody and tandem scFv , 2004, The journal of gene medicine.

[17]  Jan E Schnitzer,et al.  Screening phage display libraries for organ-specific vascular immunotargeting in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  W. Ouwehand,et al.  Molecular characteristics of anti‐self antibody fragments against neutrophil cytoplasmic antigens from human V gene phage display libraries , 1995, Clinical and experimental immunology.

[19]  I. Carlavan,et al.  Isolation and characterization of antagonist and agonist peptides to the human melanocortin 1 receptor , 2005, Peptides.

[20]  T Prospero,et al.  "Diabodies": small bivalent and bispecific antibody fragments. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Marahiel,et al.  Nonribosomal peptides: from genes to products. , 2003, Natural product reports.

[22]  P. Kristensen,et al.  Multivalent display system on filamentous bacteriophage pVII minor coat protein. , 2005, Journal of immunological methods.

[23]  N. Caberoy,et al.  Efficient identification of tubby‐binding proteins by an improved system of T7 phage display , 2009, Journal of molecular recognition : JMR.

[24]  L A Day,et al.  DNA packing in filamentous bacteriophages. , 1988, Annual review of biophysics and biophysical chemistry.

[25]  M. Little,et al.  Single-chain antibody streptavidin fusions: tetrameric bifunctional scFv-complexes with biotin binding activity and enhanced affinity to antigen. , 1995, Human antibodies and hybridomas.

[26]  J. Bach Les anticorps monoclonaux thrapeutiques , 2006 .

[27]  R. Perham,et al.  Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. , 1991, Journal of molecular biology.

[28]  C Nave,et al.  Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe. , 1994, Journal of molecular biology.

[29]  A. L. Vergnon,et al.  Electrophoretic methods for studying protein-protein interactions. , 1999, Methods.

[30]  L L Houston,et al.  Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. , 1993, Cancer research.

[31]  P. Hultman Environmental factors that contribute to autoimmunity. , 2005 .

[32]  L. Makowski,et al.  Construction of a microphage variant of filamentous bacteriophage. , 1992, Journal of molecular biology.

[33]  Jörg Stülke,et al.  SPINE: A method for the rapid detection and analysis of protein–protein interactions in vivo , 2007, Proteomics.

[34]  B. Strukelj,et al.  Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors , 2011, Molecules.

[35]  W. Wilson,et al.  Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. , 2001, The New England journal of medicine.

[36]  L E Williams,et al.  Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. , 1996, Cancer research.

[37]  F. Fack,et al.  Epitope mapping by phage display: random versus gene-fragment libraries. , 1997, Journal of immunological methods.

[38]  Jay J Thelen,et al.  Biochemical approaches for discovering protein-protein interactions. , 2008, The Plant journal : for cell and molecular biology.

[39]  A. Archakov,et al.  Continuous B-epitope maps of cytochrome P450cam (CYP101) obtained by peptide scanning: correlation to spatial structure. , 2002, Archives of biochemistry and biophysics.

[40]  Anna R. Mäkelä,et al.  Creation of baculovirus display libraries. , 2010, Cold Spring Harbor protocols.

[41]  L. Riechmann,et al.  The C-Terminal Domain of TolA Is the Coreceptor for Filamentous Phage Infection of E. coli , 1997, Cell.

[42]  G. P. Smith,et al.  Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. , 1985, Science.

[43]  Nimrod D. Rubinstein,et al.  A machine-learning approach for predicting B-cell epitopes. , 2009, Molecular immunology.

[44]  G. Weiss,et al.  Optimizing the affinity and specificity of proteins with molecular display. , 2006, Molecular bioSystems.

[45]  S J Rodda,et al.  Cognitive features of continuous antigenic determinants , 1988, Journal of molecular recognition : JMR.

[46]  G. P. Smith,et al.  Libraries of peptides and proteins displayed on filamentous phage. , 1993, Methods in enzymology.

[47]  M. Little,et al.  Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion. , 1996, Protein engineering.

[48]  Richard T. Lee,et al.  Identification of targeting peptides for ischemic myocardium by in vivo phage display. , 2011, Journal of molecular and cellular cardiology.

[49]  Jyoti Pande,et al.  Phage display: concept, innovations, applications and future. , 2010, Biotechnology advances.

[50]  P. Iliades,et al.  Triabodies: single chain Fv fragments without a linker form trivalent trimers , 1997, FEBS letters.

[51]  W. Stemmer,et al.  DNA shuffling of a family of genes from diverse species accelerates directed evolution , 1998, Nature.

[52]  A. Plückthun,et al.  Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli. , 1992, Biochemistry.

[53]  Yujin Zhang,et al.  Identification of tribbles homolog 2 as an autoantigen in autoimmune uveitis by phage display. , 2005, Molecular Immunology.

[54]  L. Makowski,et al.  Three-dimensional structure of a cloning vector. X-ray diffraction studies of filamentous bacteriophage M13 at 7 A resolution. , 1992, Journal of molecular biology.

[55]  I. Kumagai,et al.  Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. , 1999, Biopolymers.

[56]  M. Mousli,et al.  Production and characterization of a bivalent single chain Fv/alkaline phosphatase conjugate specific for the hemocyanin of the scorpion Androctonus australis. , 1998, Biochimica et biophysica acta.

[57]  Xianqun Fan,et al.  Efficient identification of phosphatidylserine-binding proteins by ORF phage display. , 2009, Biochemical and biophysical research communications.

[58]  S. Fields,et al.  Protein-protein interactions: methods for detection and analysis , 1995, Microbiological reviews.

[59]  C. White,et al.  Bivalirudin: a review of pharmacology and therapeutic use. , 2010, Connecticut medicine.

[60]  R. Chiaraluce,et al.  A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. , 2001, Journal of molecular biology.

[61]  D. Deperthes,et al.  Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected scFv fragments on streptavidin. , 2000, Molecular immunology.

[62]  J. Baenziger,et al.  Thermal stabilization of a single‐chain Fv antibody fragment by introduction of a disulphide bond , 1995, FEBS letters.

[63]  F. Mackenzie,et al.  The crystal structures of human calpains 1 and 9 imply diverse mechanisms of action and auto-inhibition. , 2007, Journal of molecular biology.

[64]  U Landegren,et al.  Profiling protein expression and interactions: proximity ligation as a tool for personalized medicine , 2010, Journal of internal medicine.

[65]  F. Lund-Johansen,et al.  Rapid Generation of Rotavirus-Specific Human Monoclonal Antibodies from Small-Intestinal Mucosa , 2010, The Journal of Immunology.

[66]  D. Boger,et al.  Total syntheses of thiocoraline and BE-22179 and assessment of their DNA binding and biological properties. , 2001, Journal of the American Chemical Society.

[67]  I. Lasters,et al.  High-density mutagenesis by combined DNA shuffling and phage display to assign essential amino acid residues in protein-protein interactions: application to study structure-function of plasminogen activation inhibitor 1 (PAI-I). , 2000, Journal of molecular biology.

[68]  Matthias Paschke,et al.  Phage display systems and their applications , 2006, Applied Microbiology and Biotechnology.

[69]  L. Burdine,et al.  Label transfer chemistry for the characterization of protein-protein interactions. , 2007, Journal of the American Chemical Society.

[70]  Carlos F. Barbas,et al.  Phage display: a Laboratory manual , 2014 .

[71]  A. Sinz Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry , 2010, Analytical and bioanalytical chemistry.

[72]  G. Winter,et al.  Phage antibodies: filamentous phage displaying antibody variable domains , 1990, Nature.

[73]  S. Batra,et al.  The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs. , 2005, Nuclear medicine and biology.

[74]  Olan Dolezal,et al.  Single-chain Fv multimers of the anti-neuraminidase antibody NC10: the residue at position 15 in the V(L) domain of the scFv-0 (V(L)-V(H)) molecule is primarily responsible for formation of a tetramer-trimer equilibrium. , 2003, Protein engineering.

[75]  M. Sutcliffe,et al.  Protein-protein interactions. , 2010, Biochemical Society transactions.

[76]  D. Germolec,et al.  Introduction to immunology and autoimmunity. , 1999, Environmental health perspectives.

[77]  Zoltán Konthur,et al.  High-throughput applications of phage display in proteomic analyses , 2003 .

[78]  Hyo Jeong Hong,et al.  Antibody engineering for the development of therapeutic antibodies. , 2005, Molecules and cells.

[79]  A. Plückthun,et al.  In vitro selection and evolution of functional proteins by using ribosome display. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. Perham,et al.  Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. , 1993, Gene.

[81]  K. A. Noren,et al.  Construction of high-complexity combinatorial phage display peptide libraries. , 2001, Methods.

[82]  Toshihiro Sato,et al.  Isolation of a Drosophila gene coding for a protein containing a novel phosphatidylserine-binding motif. , 2005, Journal of biochemistry.

[83]  Benjamin,et al.  Site-Directed Mutagenesis in Epitope Mapping , 1996, Methods.

[84]  O. Arancio,et al.  Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. , 2008, The Journal of clinical investigation.

[85]  M. Taussig,et al.  Ribosome display of antibodies: expression, specificity and recovery in a eukaryotic system. , 2005, Journal of immunological methods.

[86]  Y. Nie,et al.  Screening and Identification of Recombinant Anti-Idiotype Antibodies against Gastric Cancer and Colon Cancer Monoclonal Antibodies by a Phage-Displayed Single-Chain Variable Fragment Library , 2010, Journal of biomolecular screening.

[87]  R. Cortese,et al.  Searching for DNA-protein interactions by lambda phage display. , 2002, Journal of molecular biology.

[88]  P. Agris,et al.  Experimental Models of Protein–RNA Interaction: Isolation and Analyses of tRNAPhe and U1 snRNA-Binding Peptides from Bacteriophage Display Libraries , 1999, Journal of protein chemistry.

[89]  Ahmad S. Khalil,et al.  Single M13 bacteriophage tethering and stretching , 2007, Proceedings of the National Academy of Sciences.

[90]  M. Mann,et al.  Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK) , 2006, Nature Methods.

[91]  M. Mousli,et al.  A recombinant single‐chain antibody fragment that neutralizes toxin II from the venom of the scorpion Androctonus australis hector , 1999, FEBS letters.

[92]  P. T. Jones,et al.  Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli , 1989, Nature.

[93]  C. Milstein,et al.  Continuous cultures of fused cells secreting antibody of predefined specificity , 1975, Nature.

[94]  L. Zardi,et al.  Selective targeting of tumoral vasculature: Comparison of different formats of an antibody (L19) to the ED‐B domain of fibronectin , 2002, International journal of cancer.

[95]  N. Carragher Calpain inhibition: a therapeutic strategy targeting multiple disease states. , 2006, Current pharmaceutical design.

[96]  Y. Shoenfeld,et al.  Identification of a peptide mimicking the binding pattern of an antiphospholipid antibody. , 2006, Immunobiology.

[97]  Juan D Chavez,et al.  Quantification of protein-protein interactions with chemical cross-linking and mass spectrometry. , 2011, Journal of proteome research.

[98]  Gregory Kucherov,et al.  Structural pattern matching of nonribosomal peptides , 2009, BMC Structural Biology.

[99]  D. Jäger,et al.  Antibodies and vaccines--hope or illusion? , 2005, Breast.

[100]  M.H.V. Van Regenmortel,et al.  Antigenicity and immunogenicity of synthetic peptides. , 2001 .

[101]  L. Possani,et al.  Fab fragments of the monoclonal antibody BCF2 are capable of neutralizing the whole soluble venom from the scorpion Centruroides noxius Hoffmann. , 1996, Toxicon : official journal of the International Society on Toxinology.

[102]  J. Larrick,et al.  Probing the normal and autoimmune B cell repertoire with Epstein-Barr virus. Frequency of B cells producing monoreactive high affinity autoantibodies in patients with Hashimoto's disease and systemic lupus erythematosus. , 1988, Journal of immunology.

[103]  J. Fruton A History Of Pepsin And Related Enzymes , 2002, The Quarterly Review of Biology.

[104]  Emmanuel Dias-Neto,et al.  Next-Generation Phage Display: Integrating and Comparing Available Molecular Tools to Enable Cost-Effective High-Throughput Analysis , 2009, PloS one.

[105]  L. An,et al.  The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. , 2010, Protein expression and purification.

[106]  R. Glockshuber,et al.  A comparison of strategies to stabilize immunoglobulin Fv-fragments. , 1990, Biochemistry.

[107]  M. Kuroki,et al.  T-cell immunotherapy for human MK-1-expressing tumors using a fusion protein of the superantigen SEA and anti-MK-1 scFv antibody. , 2002, Anticancer research.

[108]  I. Cohen Regulation of Autoimmune Disease Physiological and Therapeutic , 1986, Immunological reviews.

[109]  A. Craig,et al.  Vaccination with peptide mimotopes produces antibodies recognizing bacterial capsular polysaccharides. , 2010, Vaccine.

[110]  E. Bautz,et al.  Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries , 1995, Molecular and General Genetics MGG.

[111]  Michael P. Levens,et al.  Engineering high affinity superantigens by phage display. , 2005, Journal of molecular biology.

[112]  Jonathan M. Gershoni,et al.  Epitope Mapping , 2012, BioDrugs.

[113]  W. Stemmer,et al.  Evolution of a cytokine using DNA family shuffling , 1999, Nature Biotechnology.

[114]  J. Shively,et al.  Role of calpain-9 and PKC-delta in the apoptotic mechanism of lumen formation in CEACAM1 transfected breast epithelial cells. , 2010, Experimental cell research.

[115]  A. Plückthun,et al.  Multivalent antibody fragments with high functional affinity for a tumor-associated carbohydrate antigen. , 1996, Journal of immunology.

[116]  P. Hudson,et al.  Engineered antibody fragments and the rise of single domains , 2005, Nature Biotechnology.

[117]  L. Makowski,et al.  Phage-display technology--finding a needle in a vast molecular haystack. , 1999, Current opinion in biotechnology.

[118]  V. Quintero-Hernández,et al.  Directed evolution, phage display and combination of evolved mutants: a strategy to recover the neutralization properties of the scFv version of BCF2 a neutralizing monoclonal antibody specific to scorpion toxin Cn2. , 2005, Journal of molecular biology.

[119]  A. Abell,et al.  Evaluation of a novel calpain inhibitor as a treatment for cataract , 2008, Clinical & experimental ophthalmology.

[120]  A. Nissim,et al.  Single chain antibodies specific for fatty acids derived from a semi-synthetic phage display library. , 2002, Biochimica et biophysica acta.

[121]  S. Cabilly,et al.  The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries , 1999, Methods in molecular biology.

[122]  R. Lerner,et al.  Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[123]  E. H. Cohen,et al.  Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity , 2005, Nature Biotechnology.

[124]  G. P. Smith,et al.  Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. , 1988, Gene.

[125]  S. Duquesne,et al.  Microcins, gene-encoded antibacterial peptides from enterobacteria. , 2007, Natural product reports.

[126]  Zhiyuan Hu,et al.  Panning and Identification of a Colon Tumor Binding Peptide from a Phage Display Peptide Library , 2007, Journal of biomolecular screening.

[127]  J. Hall,et al.  Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. , 2009, Biotechnology advances.

[128]  J. Beckmann,et al.  Mutations in calpain 3 associated with limb girdle muscular dystrophy: analysis by molecular modeling and by mutation in m-calpain. , 2001, Biophysical journal.

[129]  S. Gambhir,et al.  Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. , 2004, Protein engineering, design & selection : PEDS.

[130]  E. Voss,et al.  Construction, expression, and activity of a bivalent bispecific single-chain antibody. , 1994, The Journal of biological chemistry.

[131]  G. Georgiou,et al.  Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Anthony Williams,et al.  DX-88 and HAE: a developmental perspective. , 2003, Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis.

[133]  E. Ooi,et al.  Neutralizing human monoclonal antibody against H5N1 influenza HA selected from a Fab-phage display library , 2008, Virology Journal.

[134]  J. Belasco,et al.  T7 phage display: A novel genetic selection system for cloning RNA-binding proteins from cDNA libraries , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[135]  E. Horjales,et al.  Bacterial expression, purification and functional characterization of a recombinant chimeric Fab derived from murine mAb BCF2 that neutralizes the venom of the scorpion Centruroides noxius hoffmann. , 2004, Toxicon : official journal of the International Society on Toxinology.

[136]  R. Goldstein,et al.  Airborne Pollutants and the Immune System , 1996, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.