Pressure-Thresholded Response in Cylindrically Shocked Cyclotrimethylene Trinitramine (RDX).

We demonstrate a strongly thresholded response in cyclotrimethylene trinitramine (RDX) when it is cylindrically shocked using a novel waveguide geometry. Using ultrafast single-shot multi-frame imaging, we demonstrate that <100-μm diameter single crystals of RDX embedded in a polymer host deform along preferential planes for >100 ns after the shock first arrives in the crystal. We use in-situ imaging and time-resolved photoemission to demonstrate that short-lived chemistry is linked to high-energy deformation planes. Using scanning electron microscopy and ultrasmall-angle X-ray scattering, we demonstrate that the shock-induced dynamics leave behind sintered crystals, with pore shapes and sizes that change significantly with shock energy. A threshold pressure of ~ 12 GPa at the center of convergence separated the single-mode planar crystal deformations from the chemistry-coupled multi-plane dynamics at higher pressures. Our observations indicate preferential deformation mechanics in our cylindrically shocked system, despite the applied stress along many different crystallographic planes.

[1]  K. Nelson,et al.  Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves in a Multi-Layered Assembly , 2017, Scientific Reports.

[2]  Marylesa Howard,et al.  A Locally Adapting Technique for Edge Detection using Image Segmentation , 2018, SIAM J. Sci. Comput..

[3]  Fan Zhang,et al.  Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion. , 2018, Acta materialia.

[4]  L. Levine,et al.  Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source. , 2018, Journal of applied crystallography.

[5]  M. Koslowski,et al.  Dynamic fracture and hot-spot modeling in energetic composites , 2018 .

[6]  Keith A. Nelson,et al.  Machine learning to analyze images of shocked materials for precise and accurate measurements , 2017, 1708.07261.

[7]  Keith A. Nelson,et al.  Development of Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves for Deeper Understanding of a Multi-Layered Target Geometry , 2017 .

[8]  Marylesa Howard,et al.  A Locally Adapting Technique for Boundary Detection using Image Segmentation , 2017, ArXiv.

[9]  Marc J. Cawkwell,et al.  A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine , 2017 .

[10]  Bahman Zohuri,et al.  Shock Wave and High-Pressure Phenomena , 2017 .

[11]  David Veysset,et al.  Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer , 2016, Scientific Reports.

[12]  W. H. Li,et al.  The spallation of single crystal SiC: The effects of shock pulse duration , 2016 .

[13]  S. Glenzer,et al.  Matter under extreme conditions experiments at the Linac Coherent Light Source , 2016 .

[14]  E. Kober,et al.  Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale , 2015 .

[15]  M. Zikry,et al.  Dynamic fracture and local failure mechanisms in heterogeneous RDX-Estane energetic aggregates , 2015, Journal of Materials Science.

[16]  Ming-Wei Chen,et al.  Ultrasonic hammer produces hot spots in solids , 2015, Nature Communications.

[17]  W. Goddard,et al.  Inhibition of Hotspot Formation in Polymer Bonded Explosives Using an Interface Matching Low Density Polymer Coating at the Polymer–Explosive Interface , 2014 .

[18]  Rahul,et al.  A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX , 2014 .

[19]  W. Goddard,et al.  Highly Shocked Polymer Bonded Explosives at a Nonplanar Interface: Hot-Spot Formation Leading to Detonation , 2013 .

[20]  G. Settles,et al.  Schlieren and Shadowgraph Techniques : Visualizing Phenomena in Transparent Media , 2012 .

[21]  Y. Gupta,et al.  High pressure-high temperature decomposition of γ-cyclotrimethylene trinitramine. , 2012, The journal of physical chemistry. A.

[22]  R. Hudson Investigating the factors influencing RDX shock sensitivity , 2012 .

[23]  S. Solares,et al.  Generalized stacking fault energy surfaces in the molecular crystal αRDX , 2012 .

[24]  W. Goddard,et al.  Anisotropic Shock Sensitivity of Cyclotrimethylene Trinitramine (RDX) from Compress-and-Shear Reactive Dynamics , 2012 .

[25]  J. Forbes Shock Wave Compression of Condensed Matter , 2012 .

[26]  K. Nelson,et al.  Direct visualization of laser-driven focusing shock waves. , 2011, Physical review letters.

[27]  Nathan R. Barton,et al.  A multiscale strength model for extreme loading conditions , 2011 .

[28]  J. Knauer,et al.  Inertial Confinement Fusion Using the OMEGA Laser System , 2011, IEEE Transactions on Plasma Science.

[29]  A. V. van Duin,et al.  Modeling High Rate Impact Sensitivity of Perfect RDX and HMX Crystals by ReaxFF Reactive Dynamics , 2010 .

[30]  J. Hooper,et al.  Neutron scattering study of internal void structure in RDX , 2010 .

[31]  Pete R. Jemian,et al.  Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering , 2010 .

[32]  M. Cawkwell,et al.  Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading , 2010 .

[33]  J. Hooper Vibrational energy transfer in shocked molecular crystals. , 2009, The Journal of chemical physics.

[34]  D. Bahr,et al.  Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindentation , 2009 .

[35]  Pete R. Jemian,et al.  Irena: tool suite for modeling and analysis of small‐angle scattering , 2009 .

[36]  Y. Gupta,et al.  Shock wave induced decomposition of RDX: time-resolved spectroscopy. , 2008, The journal of physical chemistry. A.

[37]  Y. Gupta,et al.  Shock wave induced decomposition of RDX: quantum chemistry calculations. , 2008, The journal of physical chemistry. A.

[38]  M. Cawkwell,et al.  Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations , 2008 .

[39]  N. Kitamura,et al.  Laser-induced shock wave can spark triboluminescence of amorphous sugars. , 2008, The journal of physical chemistry. A.

[40]  R. Doherty,et al.  Relationship Between RDX Properties and Sensitivity , 2008 .

[41]  G. Piermarini,et al.  Static Compression of Energetic Materials , 2008 .

[42]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[43]  Dana D. Dlott,et al.  Thinking big (and small) about energetic materials , 2006 .

[44]  Stephen M. Walley,et al.  Crystal sensitivities of energetic materials , 2006 .

[45]  S. Maharrey,et al.  Thermal decomposition of energetic materials. 5. reaction processes of 1,3,5-trinitrohexahydro-s-triazine below its melting point. , 2005, The journal of physical chemistry. A.

[46]  A. V. van Duin,et al.  Thermal decomposition of RDX from reactive molecular dynamics. , 2005, The Journal of chemical physics.

[47]  T. Germann,et al.  Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results , 2004 .

[48]  C. T. White,et al.  Nanoscale view of shock-wave splitting in diamond , 2004 .

[49]  Y. Gupta,et al.  Experimental and Theoretical Study of Pentaerythritol Tetranitrate Conformers , 2004 .

[50]  R. Bouma,et al.  Crystallization and Characterization of RDX, HMX, and CL-20 , 2004 .

[51]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[52]  W. L. Elban,et al.  Investigation of hot spot characteristics in energetic crystals , 2002 .

[53]  C. S. Coffey,et al.  Lattice softening and failure in severely deformed molecular crystals , 2001 .

[54]  A. Kunz,et al.  Modeling of shock compression of RDX with defects , 2001 .

[55]  W. L. Elban,et al.  Nanofractography of shocked RDX explosive crystals with atomic force microscopy , 2001 .

[56]  D. Dlott Ultrafast spectroscopy of shock waves in molecular materials. , 1999, Annual review of physical chemistry.

[57]  Ryohei Kokawa,et al.  Growth rate of isotactic polystyrene crystals in thin films , 1998, cond-mat/0103267.

[58]  J. Belak On the nucleation and growth of voids at high strain-rates , 1998 .

[59]  S. Morgan,et al.  Effects of polarization state and scatterer concentration on optical imaging through scattering media. , 1997, Applied optics.

[60]  D. Thompson,et al.  MONTE CARLO VARIATIONAL TRANSITION-STATE THEORY STUDY OF THE UNIMOLECULAR DISSOCIATION OF RDX , 1997 .

[61]  Craig M. Tarver,et al.  Critical conditions for impact- and shock-induced hot spots in solid explosives , 1996 .

[62]  Andrei Tokmakoff,et al.  Chemical reaction initiation and hot-spot formation in shocked energetic molecular materials , 1993 .

[63]  J. Field HOT SPOT IGNITION MECHANISMS FOR EXPLOSIVES , 1992 .

[64]  Stephen M. Walley,et al.  Impact sensitivity of propellants , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[65]  W. L. Elban,et al.  Comparison of Deformation and Shock Reactivity for Single Crystals of RDX and Ammonium Perchlorate , 1992 .

[66]  Kazuyoshi Takayama,et al.  Stability of converging cylindrical shock waves , 1991 .

[67]  W. L. Elban,et al.  Crystal size dependence for impact initiation of cyclotrimethylenetrinitramine explosive , 1990 .

[68]  M. Fayer,et al.  Shocked molecular solids: Vibrational up pumping, defect hot spot formation, and the onset of chemistry , 1990 .

[69]  R. G. Rosemeier,et al.  X-ray reflection topographic study of growth defect and microindentation strain fields in an RDX explosive crystal , 1989 .

[70]  J. Dickinson,et al.  Fracto‐emission accompanying adhesive failure between rocket propellent constituents , 1987 .

[71]  P. J. Halfpenny,et al.  Dislocations in energetic materials: IV. The crystal growth and perfection of cyclotrimethylene trinitramine (RDX) , 1984 .

[72]  J. T. Dickinson,et al.  Fractoemission from cyclotrimethylenetrinitramine (RDX) explosive single crystals , 1984 .

[73]  P. J. Halfpenny,et al.  Dislocations in energetic materials , 1984 .

[74]  S. Wiederhorn,et al.  Fracture of Glass in Vacuum , 1974 .

[75]  E. Prince,et al.  The crystal structure of cyclotrimethylenetrinitramine , 1972 .

[76]  G. B. Whitham,et al.  A new approach to problems of shock dynamics Part 2. Three-dimensional problems , 1957, Journal of Fluid Mechanics.

[77]  R. F. Chisnell The normal motion of a shock wave through a non-uniform one-dimensional medium , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  W. Chester,et al.  CXLV. The quasi-cylindrical shock tube , 1954 .

[79]  F. P. Bowden,et al.  Hot spots and the initiation of explosion , 1948 .