Colour interpolants for polygonal gradient meshes

Abstract The gradient mesh is a powerful vector graphics primitive capable of representing detailed and scalable images. Borrowing techniques from 3D graphics such as subdivision surfaces and generalised barycentric coordinates, it has been recently extended from its original form supporting only rectangular arrays to (gradient) meshes of arbitrary manifold topology. We investigate and compare several formulations of the polygonal gradient mesh primitive capable of interpolating colour and colour gradients specified at the vertices of a 2D mesh of arbitrary manifold topology. Our study includes the subdivision based, topologically unrestricted gradient meshes ( Lieng et al., 2017 ) and the cubic mean value interpolant ( Li et al., 2013 ), as well as two newly-proposed techniques based on multisided parametric patches building on the Gregory generalised Bezier patch and the Charrot-Gregory corner interpolator. We adjust these patches from their original geometric 3D setting such that they have the same colour interpolation capabilities as the existing polygonal gradient mesh primitives. We compare all four techniques with respect to visual quality, performance, mathematical continuity, and editability.

[1]  Michael S. Floater,et al.  Hermite mean value interpolation on polygons , 2018, Comput. Aided Geom. Des..

[2]  Matthias Nießner,et al.  State of the Art Report on Real-time Rendering with Hardware Tessellation , 2014, Eurographics.

[3]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[4]  Jian Sun,et al.  Image vectorization using optimized gradient meshes , 2007, SIGGRAPH 2007.

[5]  James Ferguson,et al.  Multivariable Curve Interpolation , 1964, JACM.

[6]  Christian Schulz,et al.  Pointwise radial minimization: Hermite interpolation on arbitrary domains , 2008, Comput. Graph. Forum.

[7]  Shi-Min Hu,et al.  Cubic mean value coordinates , 2013, ACM Trans. Graph..

[8]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[9]  Neil A. Dodgson,et al.  A Colour Interpolation Scheme for Topologically Unrestricted Gradient Meshes , 2017, Comput. Graph. Forum.

[10]  Michael S. Floater,et al.  Generalized barycentric coordinates and applications * , 2015, Acta Numerica.

[11]  Neil A. Dodgson,et al.  Control vectors for splines , 2015, Comput. Aided Des..

[12]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[13]  John A. Gregory,et al.  A pentagonal surface patch for computer aided geometric design , 1984, Comput. Aided Geom. Des..

[14]  Jirí Kosinka,et al.  Multisided generalisations of Gregory patches , 2018, Comput. Aided Geom. Des..

[15]  Hiroaki Chiyokura,et al.  Design of solids with free-form surfaces , 1983, SIGGRAPH.

[16]  Tamás Várady,et al.  A Multi‐sided Bézier Patch with a Simple Control Structure , 2016, Comput. Graph. Forum.

[17]  Tamás Várady,et al.  Multi-sided Bézier surfaces over concave polygonal domains , 2018, Comput. Graph..

[18]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[19]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[20]  Tamás Várady,et al.  Transfinite surface interpolation over irregular n-sided domains , 2011, Comput. Aided Des..

[21]  Daniel Cohen-Or,et al.  GPU-assisted positive mean value coordinates for mesh deformations , 2007, Symposium on Geometry Processing.

[22]  Ralph R. Martin,et al.  Automatic and topology-preserving gradient mesh generation for image vectorization , 2009, SIGGRAPH 2009.

[23]  Jirí Kosinka,et al.  Locally refinable gradient meshes supporting branching and sharp colour transitions , 2018, The Visual Computer.

[24]  Jirí Kosinka,et al.  A Comparison of GPU Tessellation Strategies for Multisided Patches , 2018, Eurographics.

[25]  Pascal Barla,et al.  Gradient Art: Creation and Vectorization , 2013, Image and Video-Based Artistic Stylisation.

[26]  Brian Wood Adobe Illustrator CC Classroom in a Book , 2014 .

[27]  Foster D. Coburn,et al.  CorelDRAW 9: The Official Guide , 1999 .

[28]  Carlo H. Séquin,et al.  Local surface interpolation with shape parameters between adjoining Gregory patches , 1990, Comput. Aided Geom. Des..

[29]  Jirí Kosinka,et al.  Local and Hierarchical Refinement for Subdivision Gradient Meshes , 2018, Comput. Graph. Forum.