Generalized extended Lagrangian Born-Oppenheimer molecular dynamics.

Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Mark E. Tuckerman,et al.  Ab Initio Molecular Dynamics Simulations , 1996 .

[3]  Anders M N Niklasson,et al.  Energy conserving, linear scaling Born-Oppenheimer molecular dynamics. , 2012, The Journal of chemical physics.

[4]  Rudolf Zeller,et al.  Self-consistency iterations in electronic-structure calculations , 1983 .

[5]  Matthias Krack,et al.  Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. , 2007, Physical review letters.

[6]  Martin Karplus,et al.  Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method. , 2011, The Journal of chemical physics.

[7]  John M Herbert,et al.  Accelerated, energy-conserving Born-Oppenheimer molecular dynamics via Fock matrix extrapolation. , 2005, Physical chemistry chemical physics : PCCP.

[8]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[9]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[12]  Anders M N Niklasson,et al.  First principles molecular dynamics without self-consistent field optimization. , 2013, The Journal of chemical physics.

[13]  Nicolas Bock,et al.  Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation. , 2009, The Journal of chemical physics.

[14]  Sihong Shao,et al.  Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics , 2013, Entropy.

[15]  Johnson,et al.  Modified Broyden's method for accelerating convergence in self-consistent calculations. , 1988, Physical review. B, Condensed matter.

[16]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[17]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[18]  Barbara Kirchner,et al.  Real-world predictions from ab initio molecular dynamics simulations. , 2012, Topics in current chemistry.

[19]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[20]  Matt Challacombe,et al.  Time-reversible Born-Oppenheimer molecular dynamics. , 2006, Physical review letters.

[21]  J. M. Dickey,et al.  Computer Simulation of the Lattice Dynamics of Solids , 1969 .

[22]  Anders M. N. Niklasson,et al.  Wave function extended Lagrangian Born-Oppenheimer molecular dynamics , 2010 .

[23]  D. Remler,et al.  Molecular dynamics without effective potentials via the Car-Parrinello approach , 1990 .

[24]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[25]  Anders M. N. Niklasson,et al.  Fast method for quantum mechanical molecular dynamics , 2012, 1203.6836.

[26]  A. Niklasson,et al.  Extended Lagrangian Born-Oppenheimer molecular dynamics in the limit of vanishing self-consistent field optimization. , 2013, The Journal of chemical physics.

[27]  Xavier Gonze,et al.  Preconditioning of self-consistent-field cycles in density-functional theory: The extrapolar method , 2008 .

[28]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[29]  G. Kerker Efficient iteration scheme for self-consistent pseudopotential calculations , 1981 .

[30]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[31]  Chao Yang,et al.  Elliptic Preconditioner for Accelerating the Self-Consistent Field Iteration in Kohn-Sham Density Functional Theory , 2012, SIAM J. Sci. Comput..

[32]  Peter Pulay,et al.  Fock matrix dynamics , 2004 .

[33]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[34]  Jürg Hutter,et al.  Car–Parrinello molecular dynamics , 2012 .

[35]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[36]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[37]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[38]  Robert D. Skeel,et al.  Monitoring energy drift with shadow Hamiltonians , 2005 .

[39]  Anders M N Niklasson,et al.  Extended Born-Oppenheimer molecular dynamics. , 2008, Physical review letters.

[40]  B. M. Fulk MATH , 1992 .

[41]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[42]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[43]  Michael Methfessel,et al.  Crystal structures of zirconia from first principles and self-consistent tight binding , 1998 .

[44]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[45]  G. P. Srivastava CORRIGENDUM: Broyden's method for self-consistent field convergence acceleration , 1984 .

[46]  Paul Bendt,et al.  Simultaneous Relaxation of Nuclear Geometries and Electric Charge Densities in Electronic Structure Theories , 1983 .

[47]  Matt Challacombe,et al.  Density matrix perturbation theory. , 2003, Physical review letters.

[48]  B. Johansson,et al.  Higher-order symplectic integration in Born-Oppenheimer molecular dynamics. , 2009, The Journal of chemical physics.