A Tolerance Rough Set Based Semantic Clustering Method for Web Search Results

[1]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[2]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[3]  Tu Bao Ho,et al.  Information Retrieval Using Rough Sets , 1998 .

[4]  Shigeyoshi Ohno,et al.  Overlapping Clustering Method Using Local and Global Importance of Feature Terms at NTCIR-4 WEB Task , 2004, NTCIR.

[5]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[6]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[7]  Giansalvatore Mecca,et al.  A new algorithm for clustering search results , 2007, Data Knowl. Eng..

[8]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[9]  Tu Bao Ho,et al.  Nonhierarchical document clustering based on a tolerance rough set model , 2002, Int. J. Intell. Syst..

[10]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[11]  Xiangji Huang,et al.  Feature Selection with Rough Sets for Web Page Classification , 2004, Trans. Rough Sets.

[12]  Oren Etzioni,et al.  Grouper: A Dynamic Clustering Interface to Web Search Results , 1999, Comput. Networks.

[13]  Ted Dunning,et al.  Accurate Methods for the Statistics of Surprise and Coincidence , 1993, CL.

[14]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[15]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[16]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .