The manufacturing of micro molds by conventional and energy-assisted processes

The miniaturization of parts and components plays an important role in today’s economy, enabling the design and production of new and highly sophisticated technology in various industrial fields, such as medical, bio-chemistry, automotive, and telecommunications. Nowadays, production technology faces the challenge to manufacture small components within tight tolerances, yet, which still remain economical in large lots. In order to successfully harness this task, separating processes have been fitted to suit the needs for micro mold manufacturing and were combined with a subsequent injection-molding process to satisfy the need for large-scale production with a vast variety of possible materials. Hereafter, the scope lies on the production technology for micro mold manufacturing, namely, micro milling, micro electro discharge machining (micro EDM), and micro laser ablation. The characteristics of each process are introduced and compared to each other, concerning surface properties, achievable tolerances, potential for miniaturization, machinable scope of materials, and manufacturing productivity.

[1]  Zuyuan Yu,et al.  3D micro-EDM with simple shape electrode Part1: Machining of cavities with sharp corners and electrode wear compensation , 2000, Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology.

[2]  Jean-Pierre Kruth,et al.  Selectice laser sintering: state-of-the-art , 2001 .

[3]  M. Schünemann,et al.  Mikrosystemtechnik - Wann kommt der Durchbruch? , 1999 .

[4]  Michael Schmidt,et al.  Laser microprocessing: facts and trends , 2003, International Symposium on Laser Precision Microfabrication.

[5]  Takahisa Masuzawa,et al.  State of the Art of Micromachining , 2000 .

[6]  Friedrich Dausinger,et al.  Femtosecond technology for precision manufacturing: fundamental and technical aspects , 2003 .

[7]  M. C. Gower Excimer lasers: current and future applications in industry and medicine , 1993 .

[8]  Vitali I. Konov,et al.  Micromachining with ultrashort laser pulses: from basic understanding to technical applications , 2003, Advanced Laser Technologies.

[9]  Takahisa Masuzawa,et al.  3D Micro-EDM with Simple Shape Electrode Part 2 : Machining and error analysis of conical and spherical cavities , 1998 .

[10]  Konstantinos-Dionysios Bouzakis,et al.  Computer based prediction and experimental analysis of microend milling of steel , 2003 .

[11]  Lin Li,et al.  Chemical Assisted Laser Machining for The Minimisation of Recast and Heat Affected Zone , 2004 .

[12]  Taylan Altan,et al.  Manufacturing of Dies and Molds , 2001 .

[13]  J. Schmidt,et al.  New applications for micro-EDM , 2004 .

[14]  Rainer Paetzel Comparison excimer laser – Solid state laser , 2002 .

[15]  T. Lippert,et al.  Fundamentals and applications of polymers designed for laser ablation , 2003 .

[16]  Friedrich Dausinger,et al.  Surface structuring of metals with short and ultrashort laser pulses , 2003, International Symposium on Laser Precision Microfabrication.

[17]  Y. F. Luo,et al.  Effect of a pulsed electromagnetic field on the surface roughness in superfinishing EDM , 1990 .

[18]  Robert Lee Melcher,et al.  Laser enhanced electroplating and maskless pattern generation , 1979 .

[19]  Nadeem Hasan Rizvi,et al.  Applications of laser ablation to microengineering , 2000, SPIE High-Power Laser Ablation.

[20]  K.-H. Zum Gahr,et al.  Charakterisierung des Verschleißverhaltens von Formeinsatz-Werkstoffen für das Mikro-Pulverspritzgießen , 2004 .

[21]  Takahisa Masuzawa,et al.  Wire Electro-Discharge Grinding for Micro-Machining , 1985 .

[22]  Nadeem H. Rizvi,et al.  Femtosecond laser micromachining: Current status and applications , 2003 .

[23]  Volker Hüntrup,et al.  Mikrosystemtechnik — Wann kommt der Marktdurchbruch? , 2000 .

[24]  Andre N. Luiten,et al.  Uniform oscillations of supercontinua , 2003 .

[25]  W. Steen Laser Material Processing , 1991 .