Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions

The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.

[1]  V. Mountcastle,et al.  Parietal lobe mechanisms for directed visual attention. , 1977, Journal of neurophysiology.

[2]  Leo L. Lui,et al.  Unilateral Prefrontal Lesions Impair Memory-Guided Comparisons of Contralateral Visual Motion , 2015, The Journal of Neuroscience.

[3]  F. Windels,et al.  Neuronal activity , 2006, Molecular Neurobiology.

[4]  N. P. Bichot,et al.  Priming in Macaque Frontal Cortex during Popout Visual Search: Feature-Based Facilitation and Location-Based Inhibition of Return , 2002, The Journal of Neuroscience.

[5]  Ilya E. Monosov,et al.  Frontal eye field activity enhances object identification during covert visual search. , 2009, Journal of neurophysiology.

[6]  J. Tanji,et al.  Role of the lateral prefrontal cortex in executive behavioral control. , 2008, Physiological reviews.

[7]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[8]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[9]  David J. Freedman,et al.  Interaction between Spatial and Feature Attention in Posterior Parietal Cortex , 2016, Neuron.

[10]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[11]  K. Deisseroth,et al.  Prefrontal Parvalbumin Neurons in Control of Attention , 2016, Cell.

[12]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[13]  D. Pandya,et al.  The cortical connectivity of the prefrontal cortex in the monkey brain , 2012, Cortex.

[14]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[15]  Margaret E. Sereno,et al.  Shape selectivity in primate frontal eye field. , 2008, Journal of neurophysiology.

[16]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[17]  F. Battaglia,et al.  Oscillations in the prefrontal cortex: a gateway to memory and attention , 2011, Current Opinion in Neurobiology.

[18]  N. Makris,et al.  Hypothalamic Abnormalities in Schizophrenia: Sex Effects and Genetic Vulnerability , 2007, Biological Psychiatry.

[19]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[20]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[21]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[22]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[23]  Xiao-Jing Wang,et al.  Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas , 2010, The Journal of Neuroscience.

[24]  Stephen J. Gotts,et al.  Cell-Type-Specific Synchronization of Neural Activity in FEF with V 4 during Attention , 2022 .

[25]  M. R. Riley,et al.  Functional specialization of areas along the anterior–posterior axis of the primate prefrontal cortex , 2016, Cerebral cortex.

[26]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[27]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[28]  J. Wallis,et al.  The Role of Prefrontal Cortex in Working Memory: A Mini Review , 2015, Front. Syst. Neurosci..

[29]  G. Gregoriou,et al.  Oscillatory synchrony as a mechanism of attentional processing , 2015, Brain Research.

[30]  Robert Desimone,et al.  Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4 , 2014, Nature Neuroscience.

[31]  J. Maunsell,et al.  Using Neuronal Populations to Study the Mechanisms Underlying Spatial and Feature Attention , 2011, Neuron.

[32]  S. Rauch,et al.  Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. , 2005, The American journal of psychiatry.

[33]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[34]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[35]  Ole Jensen,et al.  Alpha Oscillations Correlate with the Successful Inhibition of Unattended Stimuli , 2011, Journal of Cognitive Neuroscience.

[36]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[37]  Markus Siegel,et al.  Cortical information flow during flexible sensorimotor decisions , 2015, Science.

[38]  R. Knight,et al.  Human prefrontal lesions increase distractibility to irrelevant sensory inputs , 1995, Neuroreport.

[39]  Tirin Moore,et al.  Spatial working memory alters the efficacy of input to visual cortex , 2017, Nature Communications.

[40]  John H. R. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[41]  J D Schall,et al.  Dynamic dissociation of visual selection from saccade programming in frontal eye field. , 2001, Journal of neurophysiology.

[42]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[43]  Julio C. Martinez-Trujillo,et al.  Prefrontal Neurons of Opposite Spatial Preference Display Distinct Target Selection Dynamics , 2013, The Journal of Neuroscience.

[44]  O. Bertrand,et al.  Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. , 2005, Cerebral cortex.

[45]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[46]  Thomas Serre,et al.  Object decoding with attention in inferior temporal cortex , 2011, Proceedings of the National Academy of Sciences.

[47]  L. Itti,et al.  Mechanisms of top-down attention , 2011, Trends in Neurosciences.

[48]  Jerald D. Kralik,et al.  Representation of Attended Versus Remembered Locations in Prefrontal Cortex , 2004, PLoS biology.

[49]  J. Duncan,et al.  Filtering of neural signals by focused attention in the monkey prefrontal cortex , 2002, Nature Neuroscience.

[50]  P. Roelfsema,et al.  Simultaneous selection by object-based attention in visual and frontal cortex , 2014, Proceedings of the National Academy of Sciences.

[51]  N. P. Bichot,et al.  Dissociation of visual discrimination from saccade programming in macaque frontal eye field. , 1997, Journal of neurophysiology.

[52]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[53]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[54]  Tirin Moore,et al.  Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons , 2009, The Journal of Neuroscience.

[55]  John J. Foxe,et al.  Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. , 2006, Journal of neurophysiology.

[56]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[57]  K. Sakai Task set and prefrontal cortex. , 2008, Annual review of neuroscience.

[58]  Robert Desimone,et al.  Top–Down Attentional Deficits in Macaques with Lesions of Lateral Prefrontal Cortex , 2007, The Journal of Neuroscience.

[59]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[60]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[61]  John Duncan,et al.  Target Detection by Opponent Coding in Monkey Prefrontal Cortex , 2010, Journal of Cognitive Neuroscience.

[62]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[63]  N. Makris,et al.  Decreased volume of left and total anterior insular lobule in schizophrenia , 2006, Schizophrenia Research.

[64]  E. Wojciulik,et al.  Attention increases neural selectivity in the human lateral occipital complex , 2004, Nature Neuroscience.

[65]  P. Roelfsema,et al.  Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field , 2009, The Journal of Neuroscience.

[66]  S C Rao,et al.  Integration of what and where in the primate prefrontal cortex. , 1997, Science.

[67]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[68]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[69]  Xiao-Jing Wang,et al.  Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex , 2016, Science Advances.

[70]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[71]  Farran Briggs,et al.  Attentional Modulation of Neuronal Activity Depends on Neuronal Feature Selectivity , 2017, Current Biology.

[72]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[73]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[74]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[75]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[76]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[77]  Paul H. E. Tiesinga,et al.  The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content , 2013, Neuroinformatics.

[78]  Eberhard E. Fetz,et al.  Effects of Input Synchrony on the Firing Rate of a Three-Conductance Cortical Neuron Model , 1994, Neural Computation.

[79]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[80]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[81]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[82]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[83]  David L. Sheinberg,et al.  Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search , 2010, Proceedings of the National Academy of Sciences.

[84]  Sunita Mandon,et al.  Switching Neuronal Inputs by Differential Modulations of Gamma-Band Phase-Coherence , 2012, The Journal of Neuroscience.

[85]  Katsuyuki Sakai,et al.  Task-specific signal transmission from prefrontal cortex in visual selective attention , 2009, Nature Neuroscience.

[86]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[87]  K. Johnston,et al.  Monkey Dorsolateral Prefrontal Cortex Sends Task-Selective Signals Directly to the Superior Colliculus , 2006, The Journal of Neuroscience.

[88]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[89]  N. P. Bichot,et al.  A Source for Feature-Based Attention in the Prefrontal Cortex , 2015, Neuron.

[90]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[91]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[92]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[93]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[94]  J. Gallant,et al.  Attention to Stimulus Features Shifts Spectral Tuning of V4 Neurons during Natural Vision , 2008, Neuron.

[95]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[97]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[98]  G. Luppino,et al.  Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey , 2007, Brain Structure and Function.

[99]  Stephen J. Gotts,et al.  Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention , 2012, Neuron.

[100]  D P Munoz,et al.  Neuronal Correlates for Preparatory Set Associated with Pro-Saccades and Anti-Saccades in the Primate Frontal Eye Field , 2000, The Journal of Neuroscience.

[101]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[102]  K M Heilman,et al.  Frontal lobe neglect in man , 1972, Neurology.

[103]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[104]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[105]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[106]  Etienne Olivier,et al.  Contribution of the Monkey Frontal Eye Field to Covert Visual Attention , 2006, The Journal of Neuroscience.

[107]  J. Schall,et al.  Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[108]  Robert Desimone,et al.  Feature-Based Attention in the Frontal Eye Field and Area V4 during Visual Search , 2011, Neuron.

[109]  W. Graf,et al.  Oculomotor Areas of the Primate Frontal Lobes: A Transneuronal Transfer of Rabies Virus and [14C]-2-Deoxyglucose Functional Imaging Study , 2004, The Journal of Neuroscience.

[110]  G. Luppino,et al.  Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. , 2010, Cerebral cortex.

[111]  Jeffrey D Schall,et al.  The neural selection and control of saccades by the frontal eye field. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[112]  Jeffrey D. Schall,et al.  Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[113]  Braden A Purcell,et al.  On the origin of event-related potentials indexing covert attentional selection during visual search: timing of selection by macaque frontal eye field and event-related potentials during pop-out search. , 2013, Journal of neurophysiology.

[114]  Nicholas A. Steinmetz,et al.  Top-down control of visual attention , 2010, Current Opinion in Neurobiology.

[115]  Vincent P. Ferrera,et al.  Microstimulation of the Dorsolateral Prefrontal Cortex Biases Saccade Target Selection , 2005, Journal of Cognitive Neuroscience.

[116]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[117]  Kirk G. Thompson,et al.  Cognitively directed spatial selection in the frontal eye field in anticipation of visual stimuli to be discriminated , 2009, Vision Research.

[118]  John Duncan,et al.  Dynamic Construction of a Coherent Attentional State in a Prefrontal Cell Population , 2013, Neuron.

[119]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[120]  J. Gottlieb,et al.  Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe , 2012, Nature Neuroscience.

[121]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[122]  J. Palva,et al.  New vistas for α-frequency band oscillations , 2007, Trends in Neurosciences.

[123]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[124]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[125]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[126]  R. Knight,et al.  Prefrontal modulation of visual processing in humans , 2000, Nature Neuroscience.

[127]  Tirin Moore,et al.  Selective Attention from Voluntary Control of Neurons in Prefrontal Cortex , 2011, Science.

[128]  Louise S. Delicato,et al.  Attention Reduces Stimulus-Driven Gamma Frequency Oscillations and Spike Field Coherence in V1 , 2010, Neuron.

[129]  C. Bruce,et al.  Topography of projections to the frontal lobe from the macaque frontal eye fields , 1993, The Journal of comparative neurology.

[130]  Takashi R Sato,et al.  Effects of Stimulus-Response Compatibility on Neural Selection in Frontal Eye Field , 2003, Neuron.

[131]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[132]  E. Miller,et al.  Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations , 2009, Neuron.

[133]  M. Petrides Dissociable Roles of Mid-Dorsolateral Prefrontal and Anterior Inferotemporal Cortex in Visual Working Memory , 2000, The Journal of Neuroscience.

[134]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[135]  J. Schall,et al.  Visual and Motor Connectivity and the Distribution of Calcium-Binding Proteins in Macaque Frontal Eye Field: Implications for Saccade Target Selection , 2009, Front. Neuroanat..

[136]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[137]  J. Fuster,et al.  Functional interactions between inferotemporal and prefrontal cortex in a cognitive task , 1985, Brain Research.

[138]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[139]  T. Womelsdorf,et al.  The role of neuronal synchronization in selective attention , 2007, Current Opinion in Neurobiology.

[140]  J. Gottlieb,et al.  Spatial and non-spatial aspects of visual attention: Interactive cognitive mechanisms and neural underpinnings , 2016, Neuropsychologia.

[141]  C. Constantinidis,et al.  Early involvement of prefrontal cortex in visual bottom up attention , 2012, Nature Neuroscience.

[142]  David L. Sheinberg,et al.  The Effects of Prefrontal Cortex Inactivation on Object Responses of Single Neurons in the Inferotemporal Cortex during Visual Search , 2011, The Journal of Neuroscience.

[143]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[144]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[145]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[146]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[147]  A Pooresmaeili,et al.  Time course of attentional modulation in the frontal eye field during curve tracing. , 2009, Journal of neurophysiology.

[148]  P S Goldman-Rakic,et al.  Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. , 1999, Cerebral cortex.

[149]  Earl K. Miller,et al.  Selective representation of relevant information by neurons in the primate prefrontal cortex , 1998, Nature.

[150]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[151]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[152]  J. Palva,et al.  New vistas for alpha-frequency band oscillations. , 2007, Trends in neurosciences.

[153]  F. Tong,et al.  Neural mechanisms of object-based attention. , 2015, Cerebral cortex.

[154]  M. Merzenich,et al.  Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. , 1987, Progress in brain research.

[155]  Yaser Merrikhi,et al.  Visual attention: Linking prefrontal sources to neuronal and behavioral correlates , 2015, Progress in Neurobiology.

[156]  Panagiotis Sapountzis,et al.  Neural signatures of attention: insights from decoding population activity patterns. , 2018, Frontiers in bioscience.

[157]  J. Maunsell,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[158]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[159]  John Duncan,et al.  Spatial and temporal distribution of visual information coding in lateral prefrontal cortex , 2014, The European journal of neuroscience.

[160]  Katsuyuki Sakai,et al.  Prefrontal Set Activity Predicts Rule-Specific Neural Processing during Subsequent Cognitive Performance , 2006, The Journal of Neuroscience.

[161]  Jim M. Monti,et al.  Neural Integration of Top-Down Spatial and Feature-Based Information in Visual Search , 2008, The Journal of Neuroscience.

[162]  N. P. Bichot,et al.  Visual feature selectivity in frontal eye fields induced by experience in mature macaques , 1996, Nature.

[163]  R. Desimone,et al.  Long-range neural coupling through synchronization with attention. , 2009, Progress in brain research.

[164]  Stefan Everling,et al.  Prefrontal and anterior cingulate cortex neurons encode attentional targets even when they do not apparently bias behavior. , 2016, Journal of neurophysiology.

[165]  Daniel Chicharro,et al.  Attention Induced Gain Stabilization in Broad and Narrow-Spiking Cells in the Frontal Eye-Field of Macaque Monkeys , 2016, The Journal of Neuroscience.

[166]  Alexander Thiele,et al.  Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors , 2013, Neuron.

[167]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[168]  Pascal Fries,et al.  Communication through coherence with inter-areal delays , 2015, Current Opinion in Neurobiology.