Three Time-Scales In An Extended Bonhoeffer–Van Der Pol Oscillator
暂无分享,去创建一个
Nikola Popović | P. De Maesschalck | N. Popović | P. Maesschalck | E. Kutafina | E. Kutafina | E. Kutafina | Nikola Popović
[1] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[2] Eugene M. Izhikevich,et al. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .
[3] P. Szmolyan,et al. Canards in R3 , 2001 .
[4] Son N. T. Tu. A phase-plane analysis of bursting in the three-dimensional Bonhoeffer-van der Pol equations , 1989 .
[5] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[6] Takashi Hikihara,et al. Period-doubling cascades of canards from the extended Bonhoeffer–van der Pol oscillator , 2010 .
[7] N. Kopell,et al. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.
[8] John Guckenheimer,et al. Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..
[9] J. G. Freire,et al. Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems , 2011 .
[10] Freddy Dumortier,et al. Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .
[11] Eric L. Schwartz,et al. Computational Neuroscience , 1993, Neuromethods.
[12] Nancy Kopell,et al. Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..
[13] Freddy Dumortier,et al. Canard Cycles and Center Manifolds , 1996 .
[14] Kuniyasu Shimizu,et al. Complex mixed-mode oscillations in a Bonhoeffer–van der Pol oscillator under weak periodic perturbation , 2012 .
[15] Peter Szmolyan,et al. Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..
[16] M. Koper. Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram , 1995 .
[17] F. Olver. Asymptotics and Special Functions , 1974 .
[18] Martin Krupa,et al. Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .
[19] C. Wilson,et al. Coupled oscillator model of the dopaminergic neuron of the substantia nigra. , 2000, Journal of neurophysiology.
[20] John Guckenheimer,et al. Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..
[21] M. Krupa,et al. Local analysis near a folded saddle-node singularity , 2010 .
[22] Peter Szmolyan,et al. Relaxation oscillations in R3 , 2004 .
[23] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[24] Jonathan E. Rubin,et al. Interaction of Canard and Singular Hopf Mechanisms in a Neural Model , 2011, SIAM J. Appl. Dyn. Syst..