Actividad "in vitro" de diferentes antibacterianos sobre bacilos gram-negativos no fermentadores, excluidos Pseudomonas aeruginosa y Acinetobacter spp.
暂无分享,去创建一个
C. Rodríguez | C. Vay | Á. Famiglietti | J. Mattera | Marisa N. Almuzara | M. L. Pugliese | F. L. Barba
[1] G. Rossolini,et al. IMP-12, a New Plasmid-Encoded Metallo-β-Lactamase from a Pseudomonas putida Clinical Isolate , 2003, Antimicrobial Agents and Chemotherapy.
[2] G. Rossolini,et al. Nosocomial Infections Caused by Multidrug-Resistant Isolates of Pseudomonas putida Producing VIM-1 Metallo-β-Lactamase , 2002, Journal of Clinical Microbiology.
[3] P. Nordmann,et al. Chromosome-Encoded β-Lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (Formerly Flavobacterium odoratum), New Members of the Lineage of Molecular Subclass B1 Metalloenzymes , 2002, Antimicrobial Agents and Chemotherapy.
[4] P. Nordmann,et al. Genetic and Biochemical Characterization of CGB-1, an Ambler Class B Carbapenem-Hydrolyzing β-Lactamase from Chryseobacterium gleum , 2002, Antimicrobial Agents and Chemotherapy.
[5] P. Nordmann,et al. Molecular and Biochemical Characterization of Ambler Class A Extended-Spectrum β-Lactamase CGA-1 from Chryseobacterium gleum , 2002, Antimicrobial Agents and Chemotherapy.
[6] A. D. Russell,et al. Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[7] P. Nordmann,et al. Genetic Diversity of Carbapenem-Hydrolyzing Metallo-β-Lactamases from Chryseobacterium(Flavobacterium) indologenes , 2000, Antimicrobial Agents and Chemotherapy.
[8] E. Goldstein,et al. Comparative In Vitro Activities of ABT-773 against Aerobic and Anaerobic Pathogens Isolated from Skin and Soft-Tissue Animal and Human Bite Wound Infections , 2000, Antimicrobial Agents and Chemotherapy.
[9] P. Nordmann,et al. Molecular and Biochemical Heterogeneity of Class B Carbapenem-Hydrolyzing β-Lactamases in Chryseobacterium meningosepticum , 2000, Antimicrobial Agents and Chemotherapy.
[10] E. De Carolis,et al. Comparative activity of new quinolones against 326 clinical isolates of Stenotrophomonas maltophilia. , 2000, The Journal of antimicrobial chemotherapy.
[11] P. Nordmann,et al. Genetic-Biochemical Analysis and Distribution of the Ambler Class A β-Lactamase CME-2, Responsible for Extended-Spectrum Cephalosporin Resistance inChryseobacterium (Flavobacterium)meningosepticum , 2000, Antimicrobial Agents and Chemotherapy.
[12] F. Baquero,et al. Comparative In Vitro Activity of Quinolones Against Stenotrophomonas maltophilia , 1999, European Journal of Clinical Microbiology and Infectious Diseases.
[13] T. Barrett,et al. Comparative In Vitro Activity of Gatifloxacin Against Stenotrophomonas maltophilia and Burkholderia Species Isolates Including Evaluation of Disk Diffusion and E Test Methods , 1999, European Journal of Clinical Microbiology and Infectious Diseases.
[14] J. Jorgensen,et al. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing , 1997, Antimicrobial agents and chemotherapy.
[15] E. Bergogne-Bérézin,et al. Susceptibility of 100 strains of Stenotrophomonas maltophilia to three beta-lactams and five beta-lactam-beta-lactamase inhibitor combinations. , 1997, The Journal of antimicrobial chemotherapy.
[16] S. Ichiyama,et al. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams , 1996, Journal of clinical microbiology.
[17] L. Ayers,et al. In vitro activities of quinolones, beta-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli , 1996, Antimicrobial agents and chemotherapy.
[18] M. Jacobs,et al. Susceptibilities of non-Pseudomonas aeruginosa gram-negative nonfermentative rods to ciprofloxacin, ofloxacin, levofloxacin, D-ofloxacin, sparfloxacin, ceftazidime, piperacillin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, and imipenem , 1996, Antimicrobial agents and chemotherapy.
[19] F. Soriano,et al. Infection caused by Ochrobactrum anthropi. , 1996, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[20] I. Phillips,et al. The Comparative In Vitro Activity of FK-037 (Cefoselis), a New Broad-Spectrum Cephalosporin. , 1995, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[21] J. R. Edwards. Meropenem: a microbiological overview. , 1995, The Journal of antimicrobial chemotherapy.
[22] A. Brink,et al. Shewanella (Pseudomonas) putrefaciens bacteremia. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[23] P. Lambert,et al. Isolation and partial purification of a carbapenem-hydrolysing metallo-beta-lactamase from Pseudomonas cepacia. , 1994, FEMS microbiology letters.
[24] J. Squifflet,et al. An outbreak of Ochrobactrum anthropi bacteraemia in five organ transplant patients. , 1994, The Journal of hospital infection.
[25] G. Bodey,et al. A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy , 1994, Antimicrobial Agents and Chemotherapy.
[26] J. Govan,et al. In vitro activities of meropenem, PD 127391, PD 131628, ceftazidime, chloramphenicol, co-trimoxazole, and ciprofloxacin against Pseudomonas cepacia , 1993, Antimicrobial Agents and Chemotherapy.
[27] M. Robb,et al. Catheter-associated sepsis caused by Ochrobactrum anthropi: report of a case and review of related nonfermentative bacteria. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[28] E. Anaissie,et al. Bacteremia due to Achromobacter xylosoxidans in patients with cancer. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[29] N. Borrell,et al. Infections with Pseudomonas paucimobilis: report of four cases and review. , 1991, Reviews of infectious diseases.
[30] D. Livermore,et al. Susceptibility to beta-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high- and low-level constitutive expression of L1 and L2 beta-lactamases. , 1991, Journal of medical microbiology.
[31] R. Smith,et al. Comparative in-vitro susceptibilities of Pseudomonas aeruginosa, Xanthomonas maltophilia, and Pseudomonas spp. to sparfloxacin (CI-978, AT-4140, PD131501) and reference antimicrobial agents. , 1991, The Journal of antimicrobial chemotherapy.
[32] K. Rolston,et al. The in-vitro susceptibility of Alcatigenes deni-trificans subsp.xylosoxidans to40 anti-microbial agents , 1990 .
[33] L. Elting,et al. Septicemia Due to Xanthomonas Species and Non‐Aeruginosa Pseudomonas Species: Increasing Incidence of Catheter‐Related Infections , 1990, Medicine.
[34] R. Fass,et al. Comparative in vitro activities of piperacillin-tazobactam and ticarcillin-clavulanate , 1989, Antimicrobial Agents and Chemotherapy.
[35] J. Freney,et al. In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents , 1988, Antimicrobial Agents and Chemotherapy.
[36] S. Mitsuhashi,et al. Properties of a broad spectrum beta-lactamase isolated from Flavobacterium meningosepticum GN14059. , 1988, The Journal of antibiotics.
[37] H. Neu,et al. Achromobacter xylosoxidans bacteremia. , 1987, Reviews of infectious diseases.
[38] L. Sollenberger,et al. Susceptibility of non-fermentative gram-negative bacteria to ciprofloxacin, norfloxacin, amifloxacin, pefloxacin and cefpirome. , 1986, The Journal of antimicrobial chemotherapy.
[39] F. Moosdeen,et al. Antibiotic resistance pattern ofFlavobacterium meningosepticum , 1986, European Journal of Clinical Microbiology.
[40] S. Mitsuhashi,et al. Purification and properties of an inducible cephalosporinase from Pseudomonas maltophilia GN12873 , 1984, Antimicrobial Agents and Chemotherapy.
[41] S. Mitsuhashi,et al. Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia , 1982, Antimicrobial Agents and Chemotherapy.
[42] P. Appelbaum,et al. Sensitivity of 341 non-fermentative gram-negative bacteria to seven beta-lactam antibiotics , 1982, European Journal of Clinical Microbiology.
[43] R. Fass,et al. In vitro susceptibilities of nonfermentative gram-negative bacilli other than Pseudomonas aeruginosa to 32 antimicrobial agents. , 1980, Reviews of infectious diseases.
[44] S. Lapage,et al. Flavobacterium odoratum: a species resistant to a wide range of antimicrobial agents. , 1979, Journal of clinical pathology.
[45] A. Graevenitz,et al. Susceptibility studies on Flavobacterium II-b , 1977 .
[46] S. Lapage,et al. Strains of Achromobacter xylosoxidans from clinical material. , 1977, Journal of clinical pathology.
[47] G. Gilardi. Infrequently encountered Pseudomonas species causing infection in humans. , 1972, Annals of internal medicine.
[48] M. J. Pickett,et al. Nonfermentative bacilli associated with man. 3. Pathogenicity and antibiotic susceptibility. , 1970, American journal of clinical pathology.
[49] P. Nordmann,et al. Metalloenzymes of the Lineage of Molecular Subclass B 1 ) , New Members Flavobacterium odoratum ( Formerly Myroides odoratimimus and Myroides odoratus TUS-1 and MUS-1 from-Lactamases β Chromosome-Encoded , 2002 .
[50] K. Rolston,et al. The in-vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 40 antimicrobial agents. , 1990, The Journal of antimicrobial chemotherapy.
[51] L. Harrell,et al. Pseudomonas putrefaciens bacteremia. , 1989, Reviews of infectious diseases.
[52] 才野 佑之. Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia , 1985 .