Actividad "in vitro" de diferentes antibacterianos sobre bacilos gram-negativos no fermentadores, excluidos Pseudomonas aeruginosa y Acinetobacter spp.

Resumen es: Los bacilos gram-negativos no fermentadores se encuentran ampliamente distribuidos en el medio ambiente. Ademas de causar dificultades en la identificaci...

[1]  G. Rossolini,et al.  IMP-12, a New Plasmid-Encoded Metallo-β-Lactamase from a Pseudomonas putida Clinical Isolate , 2003, Antimicrobial Agents and Chemotherapy.

[2]  G. Rossolini,et al.  Nosocomial Infections Caused by Multidrug-Resistant Isolates of Pseudomonas putida Producing VIM-1 Metallo-β-Lactamase , 2002, Journal of Clinical Microbiology.

[3]  P. Nordmann,et al.  Chromosome-Encoded β-Lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (Formerly Flavobacterium odoratum), New Members of the Lineage of Molecular Subclass B1 Metalloenzymes , 2002, Antimicrobial Agents and Chemotherapy.

[4]  P. Nordmann,et al.  Genetic and Biochemical Characterization of CGB-1, an Ambler Class B Carbapenem-Hydrolyzing β-Lactamase from Chryseobacterium gleum , 2002, Antimicrobial Agents and Chemotherapy.

[5]  P. Nordmann,et al.  Molecular and Biochemical Characterization of Ambler Class A Extended-Spectrum β-Lactamase CGA-1 from Chryseobacterium gleum , 2002, Antimicrobial Agents and Chemotherapy.

[6]  A. D. Russell,et al.  Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[7]  P. Nordmann,et al.  Genetic Diversity of Carbapenem-Hydrolyzing Metallo-β-Lactamases from Chryseobacterium(Flavobacterium) indologenes , 2000, Antimicrobial Agents and Chemotherapy.

[8]  E. Goldstein,et al.  Comparative In Vitro Activities of ABT-773 against Aerobic and Anaerobic Pathogens Isolated from Skin and Soft-Tissue Animal and Human Bite Wound Infections , 2000, Antimicrobial Agents and Chemotherapy.

[9]  P. Nordmann,et al.  Molecular and Biochemical Heterogeneity of Class B Carbapenem-Hydrolyzing β-Lactamases in Chryseobacterium meningosepticum , 2000, Antimicrobial Agents and Chemotherapy.

[10]  E. De Carolis,et al.  Comparative activity of new quinolones against 326 clinical isolates of Stenotrophomonas maltophilia. , 2000, The Journal of antimicrobial chemotherapy.

[11]  P. Nordmann,et al.  Genetic-Biochemical Analysis and Distribution of the Ambler Class A β-Lactamase CME-2, Responsible for Extended-Spectrum Cephalosporin Resistance inChryseobacterium (Flavobacterium)meningosepticum , 2000, Antimicrobial Agents and Chemotherapy.

[12]  F. Baquero,et al.  Comparative In Vitro Activity of Quinolones Against Stenotrophomonas maltophilia , 1999, European Journal of Clinical Microbiology and Infectious Diseases.

[13]  T. Barrett,et al.  Comparative In Vitro Activity of Gatifloxacin Against Stenotrophomonas maltophilia and Burkholderia Species Isolates Including Evaluation of Disk Diffusion and E Test Methods , 1999, European Journal of Clinical Microbiology and Infectious Diseases.

[14]  J. Jorgensen,et al.  Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing , 1997, Antimicrobial agents and chemotherapy.

[15]  E. Bergogne-Bérézin,et al.  Susceptibility of 100 strains of Stenotrophomonas maltophilia to three beta-lactams and five beta-lactam-beta-lactamase inhibitor combinations. , 1997, The Journal of antimicrobial chemotherapy.

[16]  S. Ichiyama,et al.  PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams , 1996, Journal of clinical microbiology.

[17]  L. Ayers,et al.  In vitro activities of quinolones, beta-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli , 1996, Antimicrobial agents and chemotherapy.

[18]  M. Jacobs,et al.  Susceptibilities of non-Pseudomonas aeruginosa gram-negative nonfermentative rods to ciprofloxacin, ofloxacin, levofloxacin, D-ofloxacin, sparfloxacin, ceftazidime, piperacillin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, and imipenem , 1996, Antimicrobial agents and chemotherapy.

[19]  F. Soriano,et al.  Infection caused by Ochrobactrum anthropi. , 1996, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[20]  I. Phillips,et al.  The Comparative In Vitro Activity of FK-037 (Cefoselis), a New Broad-Spectrum Cephalosporin. , 1995, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[21]  J. R. Edwards Meropenem: a microbiological overview. , 1995, The Journal of antimicrobial chemotherapy.

[22]  A. Brink,et al.  Shewanella (Pseudomonas) putrefaciens bacteremia. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[23]  P. Lambert,et al.  Isolation and partial purification of a carbapenem-hydrolysing metallo-beta-lactamase from Pseudomonas cepacia. , 1994, FEMS microbiology letters.

[24]  J. Squifflet,et al.  An outbreak of Ochrobactrum anthropi bacteraemia in five organ transplant patients. , 1994, The Journal of hospital infection.

[25]  G. Bodey,et al.  A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy , 1994, Antimicrobial Agents and Chemotherapy.

[26]  J. Govan,et al.  In vitro activities of meropenem, PD 127391, PD 131628, ceftazidime, chloramphenicol, co-trimoxazole, and ciprofloxacin against Pseudomonas cepacia , 1993, Antimicrobial Agents and Chemotherapy.

[27]  M. Robb,et al.  Catheter-associated sepsis caused by Ochrobactrum anthropi: report of a case and review of related nonfermentative bacteria. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[28]  E. Anaissie,et al.  Bacteremia due to Achromobacter xylosoxidans in patients with cancer. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[29]  N. Borrell,et al.  Infections with Pseudomonas paucimobilis: report of four cases and review. , 1991, Reviews of infectious diseases.

[30]  D. Livermore,et al.  Susceptibility to beta-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high- and low-level constitutive expression of L1 and L2 beta-lactamases. , 1991, Journal of medical microbiology.

[31]  R. Smith,et al.  Comparative in-vitro susceptibilities of Pseudomonas aeruginosa, Xanthomonas maltophilia, and Pseudomonas spp. to sparfloxacin (CI-978, AT-4140, PD131501) and reference antimicrobial agents. , 1991, The Journal of antimicrobial chemotherapy.

[32]  K. Rolston,et al.  The in-vitro susceptibility of Alcatigenes deni-trificans subsp.xylosoxidans to40 anti-microbial agents , 1990 .

[33]  L. Elting,et al.  Septicemia Due to Xanthomonas Species and Non‐Aeruginosa Pseudomonas Species: Increasing Incidence of Catheter‐Related Infections , 1990, Medicine.

[34]  R. Fass,et al.  Comparative in vitro activities of piperacillin-tazobactam and ticarcillin-clavulanate , 1989, Antimicrobial Agents and Chemotherapy.

[35]  J. Freney,et al.  In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents , 1988, Antimicrobial Agents and Chemotherapy.

[36]  S. Mitsuhashi,et al.  Properties of a broad spectrum beta-lactamase isolated from Flavobacterium meningosepticum GN14059. , 1988, The Journal of antibiotics.

[37]  H. Neu,et al.  Achromobacter xylosoxidans bacteremia. , 1987, Reviews of infectious diseases.

[38]  L. Sollenberger,et al.  Susceptibility of non-fermentative gram-negative bacteria to ciprofloxacin, norfloxacin, amifloxacin, pefloxacin and cefpirome. , 1986, The Journal of antimicrobial chemotherapy.

[39]  F. Moosdeen,et al.  Antibiotic resistance pattern ofFlavobacterium meningosepticum , 1986, European Journal of Clinical Microbiology.

[40]  S. Mitsuhashi,et al.  Purification and properties of an inducible cephalosporinase from Pseudomonas maltophilia GN12873 , 1984, Antimicrobial Agents and Chemotherapy.

[41]  S. Mitsuhashi,et al.  Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia , 1982, Antimicrobial Agents and Chemotherapy.

[42]  P. Appelbaum,et al.  Sensitivity of 341 non-fermentative gram-negative bacteria to seven beta-lactam antibiotics , 1982, European Journal of Clinical Microbiology.

[43]  R. Fass,et al.  In vitro susceptibilities of nonfermentative gram-negative bacilli other than Pseudomonas aeruginosa to 32 antimicrobial agents. , 1980, Reviews of infectious diseases.

[44]  S. Lapage,et al.  Flavobacterium odoratum: a species resistant to a wide range of antimicrobial agents. , 1979, Journal of clinical pathology.

[45]  A. Graevenitz,et al.  Susceptibility studies on Flavobacterium II-b , 1977 .

[46]  S. Lapage,et al.  Strains of Achromobacter xylosoxidans from clinical material. , 1977, Journal of clinical pathology.

[47]  G. Gilardi Infrequently encountered Pseudomonas species causing infection in humans. , 1972, Annals of internal medicine.

[48]  M. J. Pickett,et al.  Nonfermentative bacilli associated with man. 3. Pathogenicity and antibiotic susceptibility. , 1970, American journal of clinical pathology.

[49]  P. Nordmann,et al.  Metalloenzymes of the Lineage of Molecular Subclass B 1 ) , New Members Flavobacterium odoratum ( Formerly Myroides odoratimimus and Myroides odoratus TUS-1 and MUS-1 from-Lactamases β Chromosome-Encoded , 2002 .

[50]  K. Rolston,et al.  The in-vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 40 antimicrobial agents. , 1990, The Journal of antimicrobial chemotherapy.

[51]  L. Harrell,et al.  Pseudomonas putrefaciens bacteremia. , 1989, Reviews of infectious diseases.

[52]  才野 佑之 Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia , 1985 .