Hard scaling challenges for ab initio molecular dynamics capabilities in NWChem: Using 100,000 CPUs per second

An overview of the parallel algorithms for ab initio molecular dynamics (AIMD) used in the NWChem program package is presented, including recent developments for computing exact exchange. These algorithms make use of a two-dimensional processor geometry proposed by Gygi et al. for use in AIMD algorithms. Using this strategy, a highly scalable algorithm for exact exchange has been developed and incorporated into AIMD. This new algorithm for exact exchange employs an incomplete butterfly to overcome the bottleneck associated with exact exchange term, and it makes judicious use of data replication. Initial testing has shown that this algorithm can scale to over 20,000 CPUs even for a modest size simulation.

[1]  Anna Maria Ferrari,et al.  Electronic structure of NiO/Ag(100) thin films from DFT+U and hybrid functional DFT approaches , 2006 .

[2]  Tjerk P. Straatsma,et al.  NWChem: New Functionality , 2003, International Conference on Computational Science.

[3]  Marcus Lundberg,et al.  Quantifying the effects of the self-interaction error in DFT: when do the delocalized states appear? , 2005, The Journal of chemical physics.

[4]  Jacek A. Majewski,et al.  Exact exchange Kohn-Sham formalism applied to semiconductors , 1999 .

[5]  Hannes Jónsson,et al.  A parallel implementation of the Car-Parrinello method by orbital decomposition , 1994 .

[6]  J. Paier,et al.  Hybrid functionals applied to extended systems , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[8]  Robert A. van de Geijn,et al.  SUMMA: Scalable Universal Matrix Multiplication Algorithm , 1995 .

[9]  Rodney C. Ewing,et al.  Spent Nuclear Fuel , 2006 .

[10]  N. M. Edelstein,et al.  Investigation of Aquo and Chloro Complexes of UO(2)(2+), NpO(2)(+), Np(4+), and Pu(3+) by X-ray Absorption Fine Structure Spectroscopy. , 1997, Inorganic chemistry.

[11]  Eric J. Bylaska,et al.  Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interaction correction , 2007 .

[12]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[13]  D. Remler,et al.  Molecular dynamics without effective potentials via the Car-Parrinello approach , 1990 .

[14]  Eric J. Bylaska,et al.  Parallel Implementation of the Projector Augmented Plane Wave Method for Charged Systems , 2002 .

[15]  Jacek A. Majewski,et al.  Exact Kohn-Sham Exchange Potential in Semiconductors , 1997 .

[16]  Jack Dongarra,et al.  Computational Science — ICCS 2003 , 2003, Lecture Notes in Computer Science.

[17]  P. Pulay,et al.  Direct inversion in the iterative subspace (DIIS) optimization of open‐shell, excited‐state, and small multiconfiguration SCF wave functions , 1986 .

[18]  Bernd Grambow,et al.  Nuclear Waste Glasses - How Durable? , 2006 .

[19]  Eric J. Bylaska,et al.  New development of self-interaction corrected DFT for extended systems applied to the calculation of native defects in 3C–SiC , 2006 .

[20]  Scott B. Baden,et al.  Parallel implementation of γ‐point pseudopotential plane‐wave DFT with exact exchange , 2011, J. Comput. Chem..

[21]  G. Lumpkin,et al.  Ceramic waste forms for actinides , 2006 .

[22]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[23]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[24]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[25]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[26]  Mike C. Payne,et al.  Large-scale ab initio total energy calculations on parallel computers , 1992 .

[27]  Eric J Bylaska,et al.  Equatorial and apical solvent shells of the UO2 2+ ion. , 2008, The Journal of chemical physics.

[28]  Nelson,et al.  Plane-wave electronic-structure calculations on a parallel supercomputer. , 1993, Physical review. B, Condensed matter.

[29]  Rodney C. Ewing,et al.  The Nuclear Fuel Cycle: A Role for Mineralogy and Geochemistry , 2006 .

[30]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[31]  J. Grotendorst,et al.  Modern methods and algorithms of quantum chemistry : winterschool 21. - 25. February 2000 Forschungszentrum Jülich : proceedings / org. by John von Neumann Institute for Computing , 2000 .

[32]  John F. Ahearne,et al.  Radioactive Waste: The Size of the Problem , 1997 .

[33]  Hannes Jonsson,et al.  A hybrid decomposition parallel implementation of the Car-Parrinello method , 1995 .

[34]  Peter C. Burns,et al.  Uranium Mineralogy and Neptunium Mobility , 2006 .