Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes

Abstract. Mining activities in cold regions are vulnerable to snow avalanches. Unlike operational facilities, which can be constructed in secure locations outside the reach of avalanches, access roads are often susceptible to being cut, leading to mine closures and significant financial losses. In this paper we discuss the application of avalanche runout modelling to predict the operational risk to mining roads, a long-standing problem for mines in high-altitude, snowy regions. We study the 35 km long road located in the "Cajon del rio Blanco" valley in the central Andes, which is operated by the Codelco Andina copper mine. In winter and early spring, this road is threatened by over 100 avalanche paths. If the release and snow cover conditions can be accurately specified, we find that avalanche dynamics modelling is able to represent runout, and safe traffic zones can be identified. We apply a detailed, physics-based snow cover model to calculate snow temperature, density and moisture content in three-dimensional terrain. This information is used to determine the initial and boundary conditions of the avalanche dynamics model. Of particular importance is the assessment of the current snow conditions along the avalanche tracks, which define the mass and thermal energy entrainment rates and therefore the possibility of avalanche growth and long runout distances.

[1]  N. Wever,et al.  Assessing wet snow avalanche activity using detailed physics based snowpack simulations , 2016 .

[2]  Yves Bühler,et al.  Configurational energy and the formation of mixed flowing/powder snow and ice avalanches , 2016, Annals of Glaciology.

[3]  O. Eisen,et al.  Verification of the multi-layer SNOWPACK model with different water transport schemes , 2015 .

[4]  P. Bartelt,et al.  Modelling cohesion in snow avalanche flow , 2015, Journal of Glaciology.

[5]  J. Schweizer,et al.  Seasonal and diurnal cycles of liquid water in snow—Measurements and modeling , 2015 .

[6]  P. Bartelt,et al.  An energy-based method to calculate streamwise density variations in snow avalanches , 2015 .

[7]  P. Bartelt,et al.  Release temperature, snow-cover entrainment and the thermal flow regime of snow avalanches , 2015, Journal of Glaciology.

[8]  M. Lehning,et al.  Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model , 2014 .

[9]  Evgeny A. Podolskiy,et al.  Physical and societal statistics for a century of snow-avalanche hazards on Sakhalin and the Kuril Islands (1910-2010) , 2014 .

[10]  F. Techel,et al.  Wet snow avalanche activity in the Swiss Alps - trend analysis for mid-winter season , 2013 .

[11]  Andy Bruno Tumbling Snow: Vulnerability to Avalanches in the Soviet North , 2013, Environmental History.

[12]  Y. Takeuchi,et al.  Snowpack estimations in the starting zone of large-scale snow avalanches in the Makunosawa valley, Myoko, Japan , 2013, Annals of Glaciology.

[13]  D. Mcclung The effects of El Niño and La Niña on snow and avalanche patterns in British Columbia, Canada, and central Chile , 2013, Journal of Glaciology.

[14]  N. Eckert,et al.  Dense avalanche friction coefficients: influence of physical properties of snow , 2013, Journal of Glaciology.

[15]  P. Bartelt,et al.  Overcoming the stauchwall: Viscoelastic stress redistribution and the start of full‐depth gliding snow avalanches , 2012 .

[16]  Jan-Thomas Fischer,et al.  Topographic curvature effects in applied avalanche modeling , 2012 .

[17]  Michael Lehning,et al.  Influence of snow cover properties on avalanche dynamics , 2012 .

[18]  Yves Bühler,et al.  Modeling mass‐dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches , 2012 .

[19]  Wolfgang Fellin,et al.  Physically-based modelling of granular flows with Open Source GIS , 2012 .

[20]  P. Bartelt,et al.  Formation of levees and en-echelon shear planes during snow avalanche run-out , 2012, Journal of Glaciology.

[21]  P. Bartelt,et al.  Dispersive pressure and density variations in snow avalanches , 2011, Journal of Glaciology.

[22]  Hiroyuki Hirashima,et al.  Wet-snow instabilities: comparison of measured and modelled liquid water content and snow stratigraphy , 2011, Annals of Glaciology.

[23]  Yves Bühler,et al.  Sensitivity of snow avalanche simulations to digital elevation model quality and resolution , 2011, Annals of Glaciology.

[24]  Marc Christen,et al.  RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain , 2010 .

[25]  J. López‐Moreno,et al.  Author ' s personal copy Impact of climate change on snowpack in the Pyrenees : Horizontal spatial variability and vertical gradients , 2017 .

[26]  Betty Sovilla,et al.  Measured shear rates in large dry and wet snow avalanches , 2009, Journal of Glaciology.

[27]  Brian W. McArdell,et al.  Granulometric investigations of snow avalanches , 2009, Journal of Glaciology.

[28]  P. Bartelt,et al.  Production and decay of random kinetic energy in granular snow avalanches , 2009, Journal of Glaciology.

[29]  P. Gauer,et al.  On Snow Avalanche Flow Regimes: Inferences from Observations and Measurements , 2008 .

[30]  Michael Lehning,et al.  Assessment of snow transport in avalanche terrain , 2008 .

[31]  Peter Gauer,et al.  Exploring the significance of the fluidized flow regime for avalanche hazard mapping , 2008, Annals of Glaciology.

[32]  P. Bartelt,et al.  Measurements of dense snow avalanche basal shear to normal stress ratios (S/N) , 2007 .

[33]  Franco Nori,et al.  Wet granular materials , 2006, cond-mat/0601660.

[34]  P. Bartelt,et al.  Fluctuation-dissipation relations for granular snow avalanches , 2006 .

[35]  P. Bartelt,et al.  Dissipated work, stability and the internal flow structure of granular snow avalanches , 2005, Journal of Glaciology.

[36]  K. Hutter,et al.  A thermodynamic model of turbulent motions in a granular material , 2004 .

[37]  P. Gauer,et al.  Possible erosion mechanisms in snow avalanches , 2004, Annals of Glaciology.

[38]  Peter Sampl,et al.  Avalanche simulation with SAMOS , 2004, Annals of Glaciology.

[39]  D. A. Miller,et al.  Preliminary experimental evidence of heating at the running surface of avalanching snow , 2003 .

[40]  A. Patra,et al.  Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington , 2003 .

[41]  J. D. L. Fuente Nieve y avalanchas, una blanca historia de riesgos en montaña, René E. León Gallardo, Ediciones de Sta. Rosa de los Andes, 2003, 307 págs , 2003 .

[42]  P. Bartelt,et al.  A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure , 2002 .

[43]  P. Bartelt,et al.  A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model , 2002 .

[44]  M. Baros,et al.  The Avalanche Catasthophe of El Teniente-Chile: August 8 of 1944 , 2002 .

[45]  V. Jomelli,et al.  Wet snow avalanche deposits in the french alps: structure and sedimentology , 2001 .

[46]  Edward E. Adams,et al.  Density, velocity and friction measurements in a dry-snow avalanche , 1998 .

[47]  D. Mcclung,et al.  The Avalanche Handbook , 1993 .

[48]  Howard Conway,et al.  Snow stability during rain , 1993, Journal of Glaciology.

[49]  B. Salm,et al.  Flow, flow transition and runout distances of flowing avalanches , 1993, Annals of Glaciology.

[50]  S. Colbeck,et al.  A review of the processes that control snow friction , 1992 .

[51]  Ice The international classification for seasonal snow on the ground , 1990 .

[52]  G. Clarke,et al.  The effects of free water on snow gliding , 1987 .

[53]  Bruno Salm,et al.  Avalanche formation, movement and effects , 1987 .

[54]  H. Gubler,et al.  Measurements and modelling of snow avalanche speeds , 1987 .

[55]  Fridtjov Irgens,et al.  A continuum model for calculating snow avalanche velocities , 1987 .

[56]  B. Salm,et al.  Measurement and Analysis of the Motion of Dense Flow Avalanches , 1985 .

[57]  T. E. Lang,et al.  A Biviscous Modified Bingham Model of Snow Avalanche Motion , 1983, Annals of Glaciology.

[58]  T. E. Lang,et al.  Calculations of avalanche friction coefficients from field data , 1980 .

[59]  Othmar Buser,et al.  Observed Maximum Run-Out Distance of Snow Avalanches and the Determination of the Friction Coefficients µ and ξ , 1980, Journal of Glaciology.