Robust function projective synchronization of two different chaotic systems with unknown parameters

This paper deals with the function projective synchronization problem of two different chaotic systems with unknown and perturbed parameters. The parameter perturbations are assumed to appear in both drive and response systems, which perturbed about the nominal parameter values. A new robust function projective synchronization method is proposed, which is able to overcome random uncertainties of all model parameters. Corresponding numerical simulations are performed to verify and illustrate the analytical results.

[1]  Jie Li,et al.  Chaos in the fractional order unified system and its synchronization , 2008, J. Frankl. Inst..

[2]  Ju H. Park Letter to the Editor: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters , 2008 .

[3]  Alexey A Koronovskii,et al.  An approach to chaotic synchronization. , 2004, Chaos.

[4]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[5]  Ming He,et al.  A robust APD synchronization scheme and its application to secure communication , 2009, J. Frankl. Inst..

[6]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[7]  Hongyue Du,et al.  Function projective synchronization of different chaotic systems with uncertain parameters , 2008 .

[8]  Hongyue Du,et al.  Function projective synchronization in coupled chaotic systems , 2010 .

[9]  Wanyu Liu,et al.  Robust function projective synchronization of a class of uncertain chaotic systems , 2009 .

[10]  Yong Chen,et al.  FUNCTION PROJECTIVE SYNCHRONIZATION BETWEEN TWO IDENTICAL CHAOTIC SYSTEMS , 2007 .

[11]  Yong Chen,et al.  The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems , 2008, Appl. Math. Comput..

[12]  Luo Runzi,et al.  Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters , 2008 .

[13]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Zhenyuan Xu,et al.  Function projective synchronization in drive–response dynamical network , 2010 .

[15]  Giuseppe Grassi Propagation of projective synchronization in a series connection of chaotic systems , 2010, J. Frankl. Inst..

[16]  WU Zhao-Yan,et al.  Adaptive Function Projective Synchronization of Discrete Chaotic Systems with Unknown Parameters , 2010 .

[17]  Ju H. Park,et al.  FURTHER RESULTS ON FUNCTIONAL PROJECTIVE SYNCHRONIZATION OF GENESIO–TESI CHAOTIC SYSTEM , 2009 .

[18]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[19]  Jinde Cao,et al.  Adaptive synchronization for delayed neural networks with stochastic perturbation , 2008, J. Frankl. Inst..

[20]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[21]  Ju H. Park Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter , 2007 .