Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors

Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.

[1]  G. Duesberg,et al.  Optimized single-layer MoS2 field-effect transistors by non-covalent functionalisation. , 2018, Nanoscale.

[2]  Hui-Ming Cheng,et al.  Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. , 2018, Chemical reviews.

[3]  Haibo Shu,et al.  Unveiling the Growth Mechanism of MoS2 with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation , 2018 .

[4]  J. Thong,et al.  Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS2 , 2017, Scientific Reports.

[5]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[6]  Bo Zhang,et al.  Ultrabroadband MoS2 Photodetector with Spectral Response from 445 to 2717 nm , 2017, Advanced materials.

[7]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[8]  J. Biskupek,et al.  Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV. , 2016, Physical review letters.

[9]  Ye Fan,et al.  Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 With Graphene Electrodes. , 2016, ACS nano.

[10]  R Saito,et al.  Raman spectroscopy of transition metal dichalcogenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  K. Wei,et al.  Large range modification of exciton species in monolayer WS2. , 2016, Applied optics.

[12]  Guanzhong Wang,et al.  Large-area high quality MoS2 monolayers grown by sulfur vapor counter flow diffusion , 2016 .

[13]  Jer‐Shing Huang,et al.  Robust room temperature valley polarization in monolayer and bilayer WS2. , 2016, Nanoscale.

[14]  L. Chu,et al.  Halide-Assisted Atmospheric Pressure Growth of Large WSe2 and WS2 Monolayer Crystals , 2015, 1509.00555.

[15]  Yu Lin Zhong,et al.  Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. , 2015, ACS nano.

[16]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[17]  Chun Li,et al.  Large-area synthesis of monolayer WS₂ and its ambient-sensitive photo-detecting performance. , 2015, Nanoscale.

[18]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[19]  J. Coleman,et al.  Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply , 2014, Scientific Reports.

[20]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[21]  Baoming Wang,et al.  Continuous Ultra-Thin MoS2 Films Grown by Low-Temperature Physical Vapor Deposition , 2014 .

[22]  S. Qin,et al.  Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition , 2014, Scientific Reports.

[23]  D. Smirnov,et al.  New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides , 2014, Scientific Reports.

[24]  P. Ajayan,et al.  Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. , 2014, Nano letters.

[25]  Litao Sun,et al.  Synthesis and Optical Properties of Large‐Area Single‐Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition , 2014 .

[26]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[27]  Kangho Lee,et al.  High‐Performance Sensors Based on Molybdenum Disulfide Thin Films , 2013, Advanced materials.

[28]  Kyeongjae Cho,et al.  Metal contacts on physical vapor deposited monolayer MoS2. , 2013, ACS nano.

[29]  Jean-Christophe Charlier,et al.  Identification of individual and few layers of WS2 using Raman Spectroscopy , 2013, Scientific Reports.

[30]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[31]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[32]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[33]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[34]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[35]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[36]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[37]  U Kaiser,et al.  Transmission electron microscopy at 20 kV for imaging and spectroscopy. , 2011, Ultramicroscopy.

[38]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[39]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[40]  A. Turchanin,et al.  One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness , 2009, 1105.5791.

[41]  C. Bittencourt,et al.  High-resolution photoelectron spectroscopy studies on WO3 films modified by Ag addition , 2005 .

[42]  Ya Dong Li,et al.  Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. , 2003, Chemistry.

[43]  J. Berkowitz,et al.  Equilibrium Composition of Sulfur Vapor , 1963 .

[44]  P. Clausing Eine Bemerkung zu einem Gaedeschen Strömungsversuch , 1932 .

[45]  W. West,et al.  The Vapor Pressures of Sulphur between 100° and 550° with related Thermal Data , 1928 .

[46]  T. H. Swan,et al.  VAPOR PRESSURES OF ORGANIC CRYSTALS BY AN EFFUSION METHOD , 1925 .