Is there a common water-activity limit for the three domains of life?

Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.

[1]  J. E. Hallsworth,et al.  Water and temperature relations of soil Actinobacteria. , 2014, Environmental microbiology reports.

[2]  D. Thuault,et al.  Development and application of a predictive model of Aspergillus candidus growth as a tool to improve shelf life of bakery products. , 2013, Food microbiology.

[3]  J. Antón,et al.  Xanthorhodopsin: A Proton Pump with a Light-Harvesting Carotenoid Antenna , 2005, Science.

[4]  N. Magan,et al.  Effects of KCl concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi , 1994 .

[5]  K. Hruška,et al.  The Ecology of Mycobacteria: Impact on Animal's and Human's Health , 2009 .

[6]  Aharon Oren,et al.  Bioenergetic Aspects of Halophilism , 1999, Microbiology and Molecular Biology Reviews.

[7]  John T. Russell,et al.  A universal measure of chaotropicity and kosmotropicity. , 2013, Environmental microbiology.

[8]  R. Raguso WHY ARE SOME FLORAL NECTARS SCENTED , 2004 .

[9]  P. Winston,et al.  Saturated Solutions For the Control of Humidity in Biological Research , 1960 .

[10]  D. Cowan,et al.  Endangered antarctic environments. , 2004, Annual review of microbiology.

[11]  I. Izhaki,et al.  Rosenbergiella nectarea gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from floral nectar. , 2013, International journal of systematic and evolutionary microbiology.

[12]  A. Oren Change of the names Haloanaerobiales, Haloanaerobiaceae and Haloanaerobium to Halanaerobiales, Halanaerobiaceae and Halanaerobium, respectively, and further nomenclatural changes within the order Halanaerobiales. , 2000, International journal of systematic and evolutionary microbiology.

[13]  R. S. Norrish An equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups , 2007 .

[14]  D. Timson,et al.  The biology of habitat dominance; can microbes behave as weeds? , 2013, Microbial biotechnology.

[15]  N. Gibbons,et al.  IMMERSION REFRACTOMETRY OF SOME HALOPHILIC BACTERIA , 1960 .

[16]  T. McGenity,et al.  Archaeal halophiles (halobacteria) from two British salt mines , 1993 .

[17]  S. Schmidt,et al.  Uncertainty analysis of hygrometer-obtained water activity measurements of saturated salt slurries and food materials. , 2009 .

[18]  F. Moyano,et al.  Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models , 2013 .

[19]  R. Atlas,et al.  Report of the COSPAR Mars Special Regions Colloquium , 2010 .

[20]  K. Schleifer,et al.  The family Halobacteriaceae. , 1992 .

[21]  A. Oren,et al.  Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes. , 2009, International journal of systematic and evolutionary microbiology.

[22]  M. Borghini,et al.  Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. , 2015, Environmental microbiology.

[23]  John I. Pitt,et al.  Xerophilic Fungi and the Spoilage of Foods of Plant Origin , 1975 .

[24]  J. E. Hallsworth,et al.  Phenotypic diversity amongst strains of Pleurotus sajor-caju: implications for cultivation in arid environments. , 2006, Mycological research.

[25]  K. Horikoshi,et al.  Actinopolyspora mortivallis sp. nov. a Moderately Halophilic Actinomycete , 1991 .

[26]  H. Anderson The reddening of salted hides and fish. , 1954, Applied microbiology.

[27]  Frances Westall,et al.  Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. , 2015, Environmental microbiology.

[28]  M. Schelhorn [Investigations on damage to water-poor foods caused by osmophile microorganisms II. Relation of threshold concentration of the osmophile mould fungus Aspergillus glaucus to the substrate pH]. , 1950 .

[29]  J. P. Harrison,et al.  The limits for life under multiple extremes. , 2013, Trends in microbiology.

[30]  L Rosso,et al.  A cardinal model to describe the effect of water activity on the growth of moulds. , 2001, International journal of food microbiology.

[31]  J. Pitt,et al.  Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi. , 1977, Journal of general microbiology.

[32]  B. Patel,et al.  Haloanaerobium lacusroseus sp. nov., an extremely halophilic fermentative bacterium from the sediments of a hypersaline lake. , 1995, International journal of systematic bacteriology.

[33]  K. Timmis,et al.  Compatible Solutes Protect against Chaotrope (Ethanol)-Induced, Nonosmotic Water Stress , 2003, Applied and Environmental Microbiology.

[34]  H. Bolhuis,et al.  Coastal Microbial Mat Diversity along a Natural Salinity Gradient , 2013, PloS one.

[35]  M. Kocur,et al.  Taxonomic Status of the Genus Halococcus Schoop , 1973 .

[36]  Douglas W. Raiford,et al.  An Extremely Halophilic Proteobacterium Combines a Highly Acidic Proteome with a Low Cytoplasmic Potassium Content* , 2012, The Journal of Biological Chemistry.

[37]  A. Simpson,et al.  Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). , 2007, Protist.

[38]  J. E. Hallsworth,et al.  Ethanol-induced water stress and fungal growth , 1998 .

[39]  N. Magan,et al.  Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. , 1995, Microbiology.

[40]  B. Austin Effectiveness of ozone for the disinfection of laboratory effluent , 1983 .

[41]  A. Oren,et al.  Microbial weeds in hypersaline habitats: the enigma of the weed-like Haloferax mediterranei. , 2014, FEMS microbiology letters.

[42]  A. Stoneham,et al.  The molecular basis of life; is life possible without water? , 2004 .

[43]  J. Pitt,et al.  Influence of temperature, water activity and pH on growth of some xerophilic fungi. , 2003, International journal of food microbiology.

[44]  G. C. Dı́az,et al.  Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). , 2011, Environmental microbiology.

[45]  Katja Sterflinger,et al.  The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment. , 2012, Environmental microbiology.

[46]  Henk Bolhuis,et al.  Isolation and cultivation of Walsby's square archaeon. , 2004, Environmental microbiology.

[47]  C. Herrera,et al.  Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. , 2013, Ecology.

[48]  J. Imhoff,et al.  The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses , 1996, Archives of Microbiology.

[49]  W. Stoeckenius,et al.  Box-shaped halophilic bacteria , 1982, Journal of bacteriology.

[50]  N. Magan,et al.  Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi , 1994 .

[51]  G. Underwood,et al.  Solutes determine the temperature windows for microbial survival and growth , 2010, Proceedings of the National Academy of Sciences.

[52]  J. Pitt,et al.  Xerochrysium gen. nov. and Bettsia, genera encompassing xerophilic species of Chrysosporium , 2013, IMA fungus.

[53]  J. Ruan,et al.  Actinopolyspora iraqiensis sp. nov., a New Halophilic Actinomycete Isolated from Soil , 1994 .

[54]  D. Timson,et al.  Water-hydrophobic compound interactions with the microbial cell , 2010 .

[55]  Itai Sharon,et al.  Comparative community genomics in the Dead Sea: an increasingly extreme environment , 2010, The ISME Journal.

[56]  B. Javor Growth Potential of Halophilic Bacteria Isolated from Solar Salt Environments: Carbon Sources and Salt Requirements , 1984, Applied and environmental microbiology.

[57]  T. Marsh,et al.  Predominance of Tetragenococcus halophilus as the cause of sugar thick juice degradation. , 2008, Food microbiology.

[58]  W. Grant Life at low water activity. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  A. Oren,et al.  Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds , 2006, Extremophiles.

[60]  Amilcare Porporato,et al.  Responses of soil microbial communities to water stress: results from a meta-analysis. , 2012, Ecology.

[61]  A. D. Brown Microbial Water Stress Physiology: Principles and Perspectives , 1990 .

[62]  J. E. Hallsworth Ethanol-induced water stress in yeast , 1998 .

[63]  Paul V. Zimba,et al.  Phytoplankton and bacterial assemblages in ballast water of U.S. military ships as a function of port of origin, voyage time, and ocean exchange practices , 2007 .

[64]  Brian C. Thomas,et al.  Metabolites Associated with Adaptation of Microorganisms to an Acidophilic, Metal-Rich Environment Identified by Stable-Isotope-Enabled Metabolomics , 2013, mBio.

[65]  D. Valentine Microbiology: Intraterrestrial lifestyles , 2013, Nature.

[66]  M. Caurie Water activity of multicomponent mixture of solutes and non‐solutes , 2005 .

[67]  H. Ruijssenaars,et al.  Hydrophobic substances induce water stress in microbial cells , 2010, Microbial biotechnology.

[68]  N. Pace,et al.  Geobiology of a microbial endolithic community in the Yellowstone geothermal environment , 2005, Nature.

[69]  T. McGenity,et al.  Origins of halophilic microorganisms in ancient salt deposits. , 2000, Environmental microbiology.

[70]  D. A. Ratkowsky,et al.  Growth Limits of Listeria monocytogenesas a Function of Temperature, pH, NaCl, and Lactic Acid , 2000, Applied and Environmental Microbiology.

[71]  B. Tindall,et al.  Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. , 2000, International journal of systematic and evolutionary microbiology.

[72]  Mariela A. González,et al.  REAPPRAISAL OF PHYSIOLOGICAL ATTRIBUTES OF NINE STRAINS OF DUNALIELLA (CHLOROPHYCEAE): GROWTH AND PIGMENT CONTENT ACROSS A SALINITY GRADIENT , 2001 .

[73]  K. Timmis,et al.  Chaotropic solutes cause water stress in Pseudomonas putida. , 2003, Environmental microbiology.

[74]  M. Schelhorn Untersuchungen über den Verderb wasserarmer Lebensmittel durch osmophile Mikroorganismen , 1950 .

[75]  Mary A. Voytek,et al.  Report of the workshop for life detection in samples from Mars , 2014 .

[76]  Efstathios Z Panagou,et al.  Modelling the effect of temperature and water activity on the growth of two ochratoxigenic strains of Aspergillus carbonarius from Greek wine grapes , 2007, Journal of applied microbiology.

[77]  A. Zeng,et al.  Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp. , 2009, Fungal genetics and biology : FG & B.

[78]  J. Frisvad,et al.  The genus Eurotium - members of indigenous fungal community in hypersaline waters of salterns. , 2005, FEMS microbiology ecology.

[79]  J. E. Hallsworth,et al.  Limits of life in hostile environments: no barriers to biosphere function? , 2009, Environmental microbiology.

[80]  D. Timson,et al.  Chaotropic and hydrophobic stress mechanisms of antifungal substances , 2014 .

[81]  A. D. Brown,et al.  Microbial water stress. , 1976, Bacteriological reviews.

[82]  H. Wösten,et al.  A decrease in bulk water and mannitol and accumulation of trehalose and trehalose-based oligosaccharides define a two-stage maturation process towards extreme stress resistance in ascospores of Neosartorya fischeri (Aspergillus fischeri). , 2015, Environmental microbiology.

[83]  D. Jennings Stress tolerance of fungi. , 1994 .

[84]  K. Timmis,et al.  Chaperonins govern growth of Escherichia coli at low temperatures , 2003, Nature Biotechnology.

[85]  D. Lovley,et al.  Extending the Upper Temperature Limit for Life , 2003, Science.

[86]  N. Gunde-Cimerman,et al.  Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.) , 2005, Antonie van Leeuwenhoek.

[87]  B. Jørgensen,et al.  Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment , 2012, Nature.

[88]  A. Hocking Microbiological facts and fictions in grain storage , 2003 .

[89]  C. Baker-Austin,et al.  Life in acid: pH homeostasis in acidophiles. , 2007, Trends in microbiology.

[90]  M. Radman,et al.  Biology of extreme radiation resistance: the way of Deinococcus radiodurans. , 2013, Cold Spring Harbor perspectives in biology.

[91]  L. Salas,et al.  A novel subaerial Dunaliella species growing on cave spiderwebs in the Atacama Desert , 2010, Extremophiles.

[92]  Magan,et al.  Water and temperature relations of growth of the entomogenous fungi beauveria bassiana, metarhizium anisopliae, and paecilomyces farinosus , 1999, Journal of invertebrate pathology.

[93]  N. Magan,et al.  Improved biological control by changing polyols/ trehalose in conidia of entomopathogens , 1994 .

[94]  Frank Oliver Glöckner,et al.  Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting Salinibacter ruber strains , 2010, The ISME Journal.

[95]  J. E. Hallsworth,et al.  Fermentative production of glycine betaine and trehalose from acid whey using Actinopolyspora halophila (MTCC 263) , 2015 .

[96]  R. Parkes,et al.  Recent studies on bacterial populations and processes in subseafloor sediments: A review , 2000 .

[97]  J. Ariño,et al.  Alkali Metal Cation Transport and Homeostasis in Yeasts , 2010, Microbiology and Molecular Biology Reviews.

[98]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[99]  C. Herrera,et al.  Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower‐living yeast , 2012, Molecular ecology.

[100]  J. García,et al.  Anaerobic bacteria from hypersaline environments. , 1994, Microbiological reviews.

[101]  A. Simpson,et al.  Halocafeteria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern , 2006, Extremophiles.

[102]  T. Marsh,et al.  Genetic and physiological diversity of Tetragenococcus halophilus strains isolated from sugar- and salt-rich environments. , 2008, Microbiology.

[103]  B. Javor Hypersaline Environments : Microbiology and Biogeochemistry , 1989 .

[104]  Shu-ying Gu,et al.  Oxygen enrichment from air through multilayer thin low-density polyethylene films , 2002 .

[105]  N. Magan,et al.  Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules , 1996, Applied and environmental microbiology.

[106]  R. Samson,et al.  Aspergillus penicilloides and Eurotium halophilicum in association with house-dust mites , 1978, Mycopathologia.

[107]  M. Potts Desiccation tolerance of prokaryotes , 1994, Microbiological reviews.

[108]  G. Zervakis,et al.  Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. , 2007, International journal of systematic and evolutionary microbiology.

[109]  P. Ball Concluding remarks: Cum grano salis. , 2013, Faraday discussions.

[110]  A. Oren,et al.  Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. , 2003, FEMS microbiology letters.

[111]  A. Oren,et al.  Glycerol metabolism in the extremely halophilic bacterium Salinibacter ruber. , 2003, FEMS microbiology letters.

[112]  H. Klenk,et al.  Actinopolyspora alba sp. nov. and Actinopolyspora erythraea sp. nov., isolated from a salt field, and reclassification of Actinopolyspora iraqiensis Ruan et al. 1994 as a heterotypic synonym of Saccharomonospora halophila. , 2011, International journal of systematic and evolutionary microbiology.

[113]  J. Schnürer,et al.  The extreme xerophilic mould Xeromyces bisporus--growth and competition at various water activities. , 2011, International journal of food microbiology.

[114]  Hallsworth,et al.  A simple method to determine the water activity of ethanol-containing samples , 1999, Biotechnology and bioengineering.

[115]  Charles S. Cockell,et al.  Reduction of the Temperature Sensitivity of Halomonas hydrothermalis by Iron Starvation Combined with Microaerobic Conditions , 2015, Applied and Environmental Microbiology.

[116]  J. I. Pitt,et al.  Further Studies on the Water Relations of Xerophilic Fungi, Including Some Halophiles , 1987 .

[117]  J. Chirife,et al.  The evaluation of water activity in aqueous solutions from freezing point depression , 2007 .

[118]  H. Jacquemyn,et al.  Microbiology of sugar-rich environments: diversity, ecology and system constraints. , 2015, Environmental microbiology.

[119]  Marie-Pierre L. Gauthier,et al.  Honey Bees Avoid Nectar Colonized by Three Bacterial Species, But Not by a Yeast Species, Isolated from the Bee Gut , 2014, PloS one.

[120]  D. Timson,et al.  Effects of Alcohols and Compatible Solutes on the Activity of β-Galactosidase , 2013, Applied Biochemistry and Biotechnology.

[121]  H L Houtzager,et al.  Antonie van Leeuwenhoek. , 1983, European journal of obstetrics, gynecology, and reproductive biology.

[122]  P. Ball,et al.  Water structure and chaotropicity: their uses, abuses and biological implications. , 2015, Physical chemistry chemical physics : PCCP.

[123]  Kenneth L. Tanaka,et al.  A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). , 2014, Astrobiology.

[124]  D SNOW,et al.  The germination of mould spores at controlled humidities. , 1949, The Annals of applied biology.

[125]  E. Casamayor,et al.  Global ecological patterns in uncultured Archaea , 2010, The ISME Journal.

[126]  P. Douzou,et al.  Water: A comprehensive treatise , 1983 .

[127]  G. Ayerst,et al.  The effects of moisture and temperature on growth and spore germination in some fungi. , 1969 .

[128]  T. Ross,et al.  Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads. , 1997, International journal of food microbiology.

[129]  O. Golyshina Environmental, Biogeographic, and Biochemical Patterns of Archaea of the Family Ferroplasmaceae , 2011, Applied and Environmental Microbiology.

[130]  K. Timmis,et al.  Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments , 2008, Saline systems.

[131]  L. Aleya,et al.  The concept of ecological succession applied to phytoplankton over four consecutive years in five ponds featuring a salinity gradient , 2010 .

[132]  S. Yamanaka,et al.  Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. , 2004, International journal of systematic and evolutionary microbiology.

[133]  K. Timmis,et al.  Limits of life in MgCl2-containing environments: chaotropicity defines the window. , 2007, Environmental microbiology.

[134]  R. Amann,et al.  Extremely Halophilic Bacteria in Crystallizer Ponds from Solar Salterns , 2000, Applied and Environmental Microbiology.

[135]  J. Pitt,et al.  Water relations of xerophilic fungi isolated from prunes. , 1968, Applied microbiology.

[136]  J. Houghton,et al.  A simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi , 2015 .

[137]  Francesco Gasparoni,et al.  Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline , 2006, Nature.

[138]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[139]  K. Skarstad,et al.  Regulating DNA replication in bacteria. , 2013, Cold Spring Harbor perspectives in biology.

[140]  A. Oren Life in Magnesium- and Calcium-Rich Hypersaline Environments: Salt Stress by Chaotropic Ions , 2013 .

[141]  Susan J. Brown,et al.  Ultrastructure and molecular phylogeny of two heterolobosean amoebae, Euplaesiobystra hypersalinica gen. et sp. nov. and Tulamoeba peronaphora gen. et sp. nov., isolated from an extremely hypersaline habitat. , 2009, Protist.

[142]  Hideo Arai,et al.  Foxing caused by fungi : Twenty-five years of study , 2000 .

[143]  Marie-Pierre L. Gauthier,et al.  Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism , 2013, Proceedings of the Royal Society B: Biological Sciences.

[144]  N. Youssef,et al.  Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales , 2013, The ISME Journal.

[145]  C. Gostinčar,et al.  Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent , 2013, BMC Genomics.

[146]  L. Hochstein,et al.  Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. , 1976, Canadian journal of microbiology.

[147]  A. Oren,et al.  Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber , 2002, Extremophiles.