Dynamics of an open elastic rod with intrinsic curvature and twist in a viscous fluid

A twisted elastic rod with intrinsic curvature is considered. We investigate the dynamics of the rod in a viscous incompressible fluid. This fluid is governed by the Navier–Stokes equations and the fluid-rod interaction problem is solved by the generalized immersed boundary method combined with the Kirchhoff rod theory. We classify the equilibrium configurations of an open elastic rod as they depend on the rod’s intrinsic characteristics and fluid properties. We assume that the intrinsic curvature and twist are distributed uniformly along the rod. In the case of zero intrinsic curvature (i.e., the stress-free state of the rod is straight), we find a critical value of twist, below which the straight state of the rod is stable. When the twist is above this critical value, however, the rod buckles locally and produces a loop or a plectoneme or a combination of both. When the constant intrinsic curvature is nonzero, we also find a critical value of twist that distinguishes a buckled rod from a stable helix. W...

[1]  G. Kirchhoff,et al.  Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .

[2]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[3]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Frederick R. Eirich,et al.  Rheology : theory and applications , 1956 .

[6]  E. E. Zajac,et al.  Stability of Two Planar Loop Elasticas , 1962 .

[7]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[8]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[9]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[10]  Benham Onset of writhing in circular elastic polymers. , 1989, Physical review. A, General physics.

[11]  J. Coyne,et al.  Analysis of the formation and elimination of loops in twisted cable , 1990 .

[12]  E. Dill,et al.  Kirchhoff's theory of rods , 1992 .

[13]  C. Calladine,et al.  Understanding DNA: The Molecule & How It Works , 1992 .

[14]  Tamar Schlick,et al.  Trefoil Knotting Revealed by Molecular Dynamics Simulations of Supercoiled DNA , 1992, Science.

[15]  S. Antman Nonlinear problems of elasticity , 1994 .

[16]  Noel C. Perkins,et al.  Nonlinear Spatial Equilibria and Stability of Cables Under Uni-axial Torque and Thrust , 1994 .

[17]  I. Klapper Biological Applications of the Dynamics of Twisted Elastic Rods , 1996 .

[18]  Alain Goriely,et al.  Nonlinear dynamics of filaments II. nonlinear analysis , 1997 .

[19]  H. Othmer,et al.  Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology , 1997 .

[20]  Alain Goriely,et al.  The Nonlinear Dynamics of Filaments , 1997 .

[21]  Alain Goriely,et al.  Nonlinear dynamics of filaments. III. Instabilities of helical rods , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Alain Goriely,et al.  Nonlinear dynamics of filaments. IV Spontaneous looping of twisted elastic rods , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  William S. Ryu,et al.  Real-Time Imaging of Fluorescent Flagellar Filaments , 2000, Journal of bacteriology.

[24]  T. Powers,et al.  Twirling and whirling: viscous dynamics of rotating elastic filaments. , 1999, Physical review letters.

[25]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[26]  A. Gent,et al.  Torsional instability of stretched rubber cylinders , 2004 .

[27]  John H. Maddocks,et al.  Kirchhoff’s Problem of Helical Equilibria of Uniform Rods , 2004 .

[28]  N. Perkins,et al.  Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables , 2005 .

[29]  H. Berg,et al.  Force-extension measurements on bacterial flagella: triggering polymorphic transformations. , 2007, Biophysical journal.

[30]  Discrete elastic model for stretching-induced flagellar polymorphs , 2008, 0804.0893.

[31]  Charles S. Peskin,et al.  Dynamics of a Closed Rod with Twist and Bend in Fluid , 2008, SIAM J. Sci. Comput..