The quantum technologies roadmap: a European community view

Within the last two decades, quantum technologies (QT) have made tremendous progress, moving from Nobel Prize award-winning experiments on quantum physics (1997: Chu, Cohen-Tanoudji, Phillips; 2001: Cornell, Ketterle, Wieman; 2005: Hall, Hansch-, Glauber; 2012: Haroche, Wineland) into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: quantum communication, where individual or entangled photons are used to transmit data in a provably secure way; quantum simulation, where well-controlled quantum systems are used to reproduce the behaviour of other, less accessible quantum systems; quantum computation, which employs quantum effects to dramatically speed up certain calculations, such as number factoring; and quantum sensing and metrology, where the high sensitivity of coherent quantum systems to external perturbations is exploited to enhance the performance of measurements of physical quantities. In Europe, the QT community has profited from several EC funded coordination projects, which, among other things, have coordinated the creation of a 150-page QT Roadmap (http://qurope.eu/h2020/qtflagship/roadmap2016). This article presents an updated summary of this roadmap.

[1]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[2]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[3]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[4]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[5]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[6]  Antonio Acín,et al.  Certified randomness in quantum physics , 2016, Nature.

[7]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[8]  T. Schumm,et al.  Interferometry with non-classical motional states of a Bose–Einstein condensate , 2014, Nature Communications.

[9]  R. Feynman Simulating physics with computers , 1999 .

[10]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[11]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[12]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[13]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[14]  Unconditional Shot-Noise-Limit Violation in Photonic Quantum Metrology , 2018, 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[15]  J. Buchmann,et al.  Quantum cryptography: a view from classical cryptography , 2017 .

[16]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[17]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[18]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[19]  Matthias Troyer,et al.  The Quantum Future of Computation , 2016, Computer.

[20]  Graham D. Marshall,et al.  Engineering integrated photonics for heralded quantum gates , 2015, Scientific Reports.

[21]  Augusto Smerzi,et al.  Non-classical states of atomic ensembles: fundamentals and applications in quantum metrology , 2016 .

[22]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[23]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[24]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[25]  N. Godbout,et al.  Entanglement-enhanced probing of a delicate material system , 2012, Nature Photonics.

[26]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[27]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[28]  James F. Dynes,et al.  A quantum access network , 2013, Nature.

[29]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[30]  Margaret Martonosi,et al.  Programming languages and compiler design for realistic quantum hardware , 2017, Nature.

[31]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[32]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[33]  Shigeki Takeuchi,et al.  An entanglement-enhanced microscope , 2013, Nature Communications.

[34]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[35]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[36]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[37]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[38]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[39]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[40]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[41]  Gerhard Klimeck,et al.  Silicon quantum processor with robust long-distance qubit couplings , 2015, Nature Communications.

[42]  D. McClelland,et al.  Quantum squeezed light in gravitational-wave detectors , 2014 .

[43]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[44]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[45]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[46]  Sophie Shermer Training Schrödinger’s cat: quantum optimal control , 2015 .

[47]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[48]  Eric Wille,et al.  Quantum optics experiments using the International Space Station: a proposal , 2012, 1211.2111.

[49]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[50]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[51]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[52]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[53]  M. Lewenstein,et al.  Ultracold atoms in optical lattices , 2012 .

[54]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.