Large wind ripples on Mars: A record of atmospheric evolution
暂无分享,去创建一个
R. A. Yingst | A. A. Fraeman | K. E. Herkenhoff | D. Y. Sumner | A. R. Vasavada | D. Ming | N. Bridges | J. Grant | K. Herkenhoff | A. Vasavada | D. D. Marais | K. Lewis | J. Grotzinger | D. Sumner | M. Rice | D. Rubin | W. Fischer | R. Ewing | M. Lamb | R. Yingst | D. D. Des Marais | Sanjeev Gupta | A. Fraeman | M. Mischna | M. Lapôtre | S. Gupta | N. T. Bridges | D. W. Ming | K. W. Lewis | D. J. Des Marais | M. S. Rice | J. P. Grotzinger | M. G. A. Lapotre | R. C. Ewing | M. P. Lamb | W. W. Fischer | D. M. Rubin | M. J. Ballard | M. Day | S. Gupta | S. G. Banham | J. A. Grant | M. A. Mischna | M. Day | S. Banham | Mitch D Day | M. Lapôtre | Douglas W. Ming | D. Ming
[1] J. Grotzinger,et al. Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum, Mars , 2006 .
[2] A. McEwen,et al. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .
[3] P. Claudin,et al. Aeolian sand ripples: experimental study of fully developed states. , 2005, Physical Review Letters.
[4] D. Rubin. A unifying model for planform straightness of ripples and dunes in air and water , 2010 .
[5] Norman H. Brooks,et al. Laboratory studies of the roughness and suspended load of alluvial streams , 1957 .
[6] L. Borgman,et al. Reconstructing random topography from preserved stratification , 1991 .
[7] R. Anderson,et al. Mars Science Laboratory Mission and Science Investigation , 2012 .
[8] Jeffrey R. Johnson,et al. Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.
[9] M. L. Sweet,et al. Algodones dune field of southeastern California: case history of a migrating modern dune field , 1988 .
[10] W. S. Chepil,et al. DYNAMICS OF WIND EROSION: II. INITIATION OF SOIL MOVEMENT , 1945 .
[11] R. Anderson,et al. Measurement of eolian sand ripple cross-sectional shapes , 1986 .
[12] Larry W. Lake,et al. Pattern analysis of dune‐field parameters , 2006 .
[13] R. E. Hunter. Basic types of stratification in small eolian dunes , 1977 .
[14] S. Leclair. Preservation of cross‐strata due to the migration of subaqueous dunes: an experimental investigation , 2002 .
[15] J. Southard,et al. Bed Configurations in Steady Unidirectional Water Flows. Part 1. Scale Model Study Using Fine Sands , 1990 .
[16] James R. Zimbelman,et al. Transverse Aeolian Ridges (TARs) on Mars , 2008 .
[17] W. S. Chepil,et al. DYNAMICS OF WIND EROSION: V. CUMULATIVE INTENSITY OF SOIL DRIFTING ACROSS ERODING FIELDS , 1945 .
[18] Paul E. Geissler,et al. Bedform migration on Mars: Current results and future plans , 2013 .
[19] Gian Gabriele Ori,et al. Ripple migration and dune activity on Mars: Evidence for dynamic wind processes , 2010 .
[20] S. Squyres,et al. Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover , 2006 .
[21] I. Wilson. AEOLIAN BEDFORMS—THEIR DEVELOPMENT AND ORIGINS , 1972 .
[22] José S Andrade,et al. Giant saltation on Mars , 2008, Proceedings of the National Academy of Sciences.
[23] H. Heywood. The Physics of Blown Sand and Desert Dunes , 1941, Nature.
[24] R. V. Morris,et al. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.
[25] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[26] J. Harder,et al. Comparative Climatology of Terrestrial Planets , 2014 .
[27] N. Bridges,et al. Elevation dependence of bedform wavelength on Tharsis Montes, Mars: Atmospheric density as a controlling parameter , 2014 .
[28] D. Rubin,et al. Bedform climbing in theory and nature , 1982 .
[29] Michael D. Smith,et al. Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity , 2006 .
[30] S. Debei,et al. The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.
[31] J. Avouac,et al. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux , 2014, Nature Communications.
[32] J. Southard,et al. Bed configuration in steady unidirectional water flows; Part 2, Synthesis of flume data , 1990 .
[33] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[34] J. Kok,et al. Basaltic sand ripples at Eagle Crater as indirect evidence for the hysteresis effect in martian saltation , 2014 .
[35] J. Grotzinger,et al. Were Aqueous Ripples on Mars Formed by Flowing Brines , 2012 .
[36] A. Seiff,et al. Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .
[37] Robert Anthony Grazer,et al. Experimental study of current ripples using medium silt , 1982 .
[38] Jeffrey R. Johnson,et al. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .
[39] A. J. Raudkivi. RIPPLES ON STREAM BED , 1997 .
[40] C. Lévi-Strauss,et al. Experimental investigation , 2013 .
[41] Jeffrey R. Johnson,et al. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface , 2014 .
[42] Aymeric-Pierre B. Peyret,et al. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars , 2010 .
[43] J. Southard,et al. Bed Configurations in Steady Unidirectional Water Flows. Part 3. Effects of Temperature and Gravity , 1990 .
[44] John H. Jones,et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars , 2015, Science.
[45] Steven W. Squyres,et al. Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .
[46] A. Knoll,et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .
[47] A. Knoll,et al. Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars , 2006 .
[48] J. R. Allen. Features of cross‐stratified units due to random and other changes in bed forms , 1973 .
[49] N. Bridges,et al. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars , 2013 .
[50] J. Kok,et al. The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.
[51] J. Avouac,et al. Earth-like sand fluxes on Mars , 2012, Nature.
[52] B. Ehlmann,et al. Tracing the fate of carbon and the atmospheric evolution of Mars , 2015, Nature Communications.
[53] D. Rubin,et al. Single and superimposed bedforms: a synthesis of San Francisco Bay and flume observations , 1980 .
[54] A. F. C. Haldemann,et al. Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.
[55] J. Zimbelman. Transverse Aeolian Ridges on Mars: First results from HiRISE images , 2010 .
[56] P. Geissler. The birth and death of transverse aeolian ridges on Mars , 2014 .
[57] T. Michaels,et al. Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars , 2011 .
[58] S. Squyres,et al. Sulfate-Rich Eolian and Wet Interdune Deposits, Erebus Crater, Meridiani Planum, Mars , 2009 .
[59] R. Bagnold. The Transport of Sand by Wind , 1937 .
[60] Alexander G. Hayes,et al. Reconstruction of eolian bed forms and paleocurrents from cross‐bedded strata at Victoria Crater, Meridiani Planum, Mars , 2010 .
[61] L. Hwang,et al. Closure of "Relation Between Bed Forms and Friction in Streams" , 1968 .
[62] Marcelo Horacio Garcia,et al. Sedimentation engineering : processes, measurements, modeling, and practice , 2008 .
[63] M. Yalin. On the Determination of Ripple Geometry , 1985 .
[64] Robert S. Anderson,et al. Eolian ripples as examples of self-organization in geomorphological systems , 1990 .
[65] A. McEwen,et al. Planet-wide sand motion on Mars , 2012 .
[66] P. Claudin,et al. Direct numerical simulations of aeolian sand ripples , 2014, Proceedings of the National Academy of Sciences.
[67] J. Iversen,et al. The effect of wind speed and bed slope on sand transport , 1999 .
[68] D. Vaz,et al. Mapping and characterization of small-scale aeolian structures on Mars: An example from the MSL landing site in Gale Crater , 2014 .
[69] N. Lancaster. Controls of eolian dune size and spacing , 1988 .
[70] Alfred S. McEwen,et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars , 2015 .
[71] D. Ming,et al. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.
[72] N. Bridges,et al. Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments , 2015 .
[73] D. B. Simons,et al. Summary of alluvial channel data from flume experiments, 1956-61 , 1966 .
[74] Ryan C. Ewing,et al. Aeolian dune interactions and dune‐field pattern formation: White Sands Dune Field, New Mexico , 2010 .
[75] J. Kok,et al. An improved parameterization of wind‐blown sand flux on Mars that includes the effect of hysteresis , 2010 .
[76] P. Geissler,et al. Pervasive Aeolian Activity Along Rover Curiosity's Traverse in Gale Crater, Mars , 2013 .
[77] A. McEwen,et al. Windy Mars: A dynamic planet as seen by the HiRISE camera , 2007 .
[78] Jaco H. Baas,et al. An empirical model for the development and equilibrium morphology of current ripples in fine sand , 1999 .