Large wind ripples on Mars: A record of atmospheric evolution

Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

[1]  J. Grotzinger,et al.  Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum, Mars , 2006 .

[2]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[3]  P. Claudin,et al.  Aeolian sand ripples: experimental study of fully developed states. , 2005, Physical Review Letters.

[4]  D. Rubin A unifying model for planform straightness of ripples and dunes in air and water , 2010 .

[5]  Norman H. Brooks,et al.  Laboratory studies of the roughness and suspended load of alluvial streams , 1957 .

[6]  L. Borgman,et al.  Reconstructing random topography from preserved stratification , 1991 .

[7]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[8]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[9]  M. L. Sweet,et al.  Algodones dune field of southeastern California: case history of a migrating modern dune field , 1988 .

[10]  W. S. Chepil,et al.  DYNAMICS OF WIND EROSION: II. INITIATION OF SOIL MOVEMENT , 1945 .

[11]  R. Anderson,et al.  Measurement of eolian sand ripple cross-sectional shapes , 1986 .

[12]  Larry W. Lake,et al.  Pattern analysis of dune‐field parameters , 2006 .

[13]  R. E. Hunter Basic types of stratification in small eolian dunes , 1977 .

[14]  S. Leclair Preservation of cross‐strata due to the migration of subaqueous dunes: an experimental investigation , 2002 .

[15]  J. Southard,et al.  Bed Configurations in Steady Unidirectional Water Flows. Part 1. Scale Model Study Using Fine Sands , 1990 .

[16]  James R. Zimbelman,et al.  Transverse Aeolian Ridges (TARs) on Mars , 2008 .

[17]  W. S. Chepil,et al.  DYNAMICS OF WIND EROSION: V. CUMULATIVE INTENSITY OF SOIL DRIFTING ACROSS ERODING FIELDS , 1945 .

[18]  Paul E. Geissler,et al.  Bedform migration on Mars: Current results and future plans , 2013 .

[19]  Gian Gabriele Ori,et al.  Ripple migration and dune activity on Mars: Evidence for dynamic wind processes , 2010 .

[20]  S. Squyres,et al.  Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover , 2006 .

[21]  I. Wilson AEOLIAN BEDFORMS—THEIR DEVELOPMENT AND ORIGINS , 1972 .

[22]  José S Andrade,et al.  Giant saltation on Mars , 2008, Proceedings of the National Academy of Sciences.

[23]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[24]  R. V. Morris,et al.  Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  J. Harder,et al.  Comparative Climatology of Terrestrial Planets , 2014 .

[27]  N. Bridges,et al.  Elevation dependence of bedform wavelength on Tharsis Montes, Mars: Atmospheric density as a controlling parameter , 2014 .

[28]  D. Rubin,et al.  Bedform climbing in theory and nature , 1982 .

[29]  Michael D. Smith,et al.  Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity , 2006 .

[30]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[31]  J. Avouac,et al.  Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux , 2014, Nature Communications.

[32]  J. Southard,et al.  Bed configuration in steady unidirectional water flows; Part 2, Synthesis of flume data , 1990 .

[33]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[34]  J. Kok,et al.  Basaltic sand ripples at Eagle Crater as indirect evidence for the hysteresis effect in martian saltation , 2014 .

[35]  J. Grotzinger,et al.  Were Aqueous Ripples on Mars Formed by Flowing Brines , 2012 .

[36]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[37]  Robert Anthony Grazer,et al.  Experimental study of current ripples using medium silt , 1982 .

[38]  Jeffrey R. Johnson,et al.  Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .

[39]  A. J. Raudkivi RIPPLES ON STREAM BED , 1997 .

[40]  C. Lévi-Strauss,et al.  Experimental investigation , 2013 .

[41]  Jeffrey R. Johnson,et al.  Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface , 2014 .

[42]  Aymeric-Pierre B. Peyret,et al.  Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars , 2010 .

[43]  J. Southard,et al.  Bed Configurations in Steady Unidirectional Water Flows. Part 3. Effects of Temperature and Gravity , 1990 .

[44]  John H. Jones,et al.  The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars , 2015, Science.

[45]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[46]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[47]  A. Knoll,et al.  Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars , 2006 .

[48]  J. R. Allen Features of cross‐stratified units due to random and other changes in bed forms , 1973 .

[49]  N. Bridges,et al.  Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars , 2013 .

[50]  J. Kok,et al.  The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.

[51]  J. Avouac,et al.  Earth-like sand fluxes on Mars , 2012, Nature.

[52]  B. Ehlmann,et al.  Tracing the fate of carbon and the atmospheric evolution of Mars , 2015, Nature Communications.

[53]  D. Rubin,et al.  Single and superimposed bedforms: a synthesis of San Francisco Bay and flume observations , 1980 .

[54]  A. F. C. Haldemann,et al.  Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.

[55]  J. Zimbelman Transverse Aeolian Ridges on Mars: First results from HiRISE images , 2010 .

[56]  P. Geissler The birth and death of transverse aeolian ridges on Mars , 2014 .

[57]  T. Michaels,et al.  Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars , 2011 .

[58]  S. Squyres,et al.  Sulfate-Rich Eolian and Wet Interdune Deposits, Erebus Crater, Meridiani Planum, Mars , 2009 .

[59]  R. Bagnold The Transport of Sand by Wind , 1937 .

[60]  Alexander G. Hayes,et al.  Reconstruction of eolian bed forms and paleocurrents from cross‐bedded strata at Victoria Crater, Meridiani Planum, Mars , 2010 .

[61]  L. Hwang,et al.  Closure of "Relation Between Bed Forms and Friction in Streams" , 1968 .

[62]  Marcelo Horacio Garcia,et al.  Sedimentation engineering : processes, measurements, modeling, and practice , 2008 .

[63]  M. Yalin On the Determination of Ripple Geometry , 1985 .

[64]  Robert S. Anderson,et al.  Eolian ripples as examples of self-organization in geomorphological systems , 1990 .

[65]  A. McEwen,et al.  Planet-wide sand motion on Mars , 2012 .

[66]  P. Claudin,et al.  Direct numerical simulations of aeolian sand ripples , 2014, Proceedings of the National Academy of Sciences.

[67]  J. Iversen,et al.  The effect of wind speed and bed slope on sand transport , 1999 .

[68]  D. Vaz,et al.  Mapping and characterization of small-scale aeolian structures on Mars: An example from the MSL landing site in Gale Crater , 2014 .

[69]  N. Lancaster Controls of eolian dune size and spacing , 1988 .

[70]  Alfred S. McEwen,et al.  Spectral evidence for hydrated salts in recurring slope lineae on Mars , 2015 .

[71]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[72]  N. Bridges,et al.  Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments , 2015 .

[73]  D. B. Simons,et al.  Summary of alluvial channel data from flume experiments, 1956-61 , 1966 .

[74]  Ryan C. Ewing,et al.  Aeolian dune interactions and dune‐field pattern formation: White Sands Dune Field, New Mexico , 2010 .

[75]  J. Kok,et al.  An improved parameterization of wind‐blown sand flux on Mars that includes the effect of hysteresis , 2010 .

[76]  P. Geissler,et al.  Pervasive Aeolian Activity Along Rover Curiosity's Traverse in Gale Crater, Mars , 2013 .

[77]  A. McEwen,et al.  Windy Mars: A dynamic planet as seen by the HiRISE camera , 2007 .

[78]  Jaco H. Baas,et al.  An empirical model for the development and equilibrium morphology of current ripples in fine sand , 1999 .