Investigating cellular structures at the nanoscale with organic fluorophores.

Super-resolution fluorescence imaging can provide insights into cellular structure and organization with a spatial resolution approaching virtually electron microscopy. Among all the different super-resolution methods single-molecule-based localization microscopy could play an exceptional role in the future because it can provide quantitative information, for example, the absolute number of biomolecules interacting in space and time. Here, small organic fluorophores are a decisive factor because they exhibit high fluorescence quantum yields and photostabilities, thus enabling their localization with nanometer precision. Besides past progress, problems with high-density and specific labeling, especially in living cells, and the lack of suited standards and long-term continuous imaging methods with minimal photodamage render the exploitation of the full potential of the method currently challenging.

[1]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[2]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[3]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[4]  S. Holden,et al.  DAOSTORM: an algorithm for high- density super-resolution microscopy , 2011, Nature Methods.

[5]  E. Isacoff,et al.  Subunit counting in membrane-bound proteins , 2007, Nature Methods.

[6]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[7]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[8]  J. Lippincott-Schwartz,et al.  Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. , 2010, Journal of the American Chemical Society.

[9]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[10]  P. Annibale,et al.  Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form , 2010 .

[11]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[12]  Suliana Manley,et al.  Photoactivatable mCherry for high-resolution two-color fluorescence microscopy , 2009, Nature Methods.

[13]  Jan Vogelsang,et al.  Superresolution microscopy on the basis of engineered dark states. , 2008, Journal of the American Chemical Society.

[14]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[15]  Mike Heilemann,et al.  Super-resolution fluorescence imaging of chromosomal DNA. , 2012, Journal of structural biology.

[16]  Mark Bates,et al.  Short-range spectroscopic ruler based on a single-molecule optical switch. , 2005, Physical review letters.

[17]  Matthew D. Lew,et al.  Extending microscopic resolution with single-molecule imaging and active control. , 2012, Annual review of biophysics.

[18]  M. Heilemann,et al.  Photoswitches: Key molecules for subdiffraction‐resolution fluorescence imaging and molecular quantification , 2009 .

[19]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[20]  K. Jacobson,et al.  Super-resolution imaging of C-type lectin and influenza hemagglutinin nanodomains on plasma membranes using blink microscopy. , 2012, Biophysical journal.

[21]  Mike Heilemann,et al.  Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[22]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[23]  P. Annibale,et al.  Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking , 2011, PloS one.

[24]  J. Spudich,et al.  Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[26]  Andrew G. York,et al.  Confined Activation and Subdiffractive Localization Enables Whole-Cell PALM with Genetically Expressed Probes , 2011, Nature Methods.

[27]  Katharina Gaus,et al.  Fluorescence localization microscopy , 2012, Communicative & integrative biology.

[28]  S. Manley,et al.  Multicolor single molecule tracking of stochastically active synthetic dyes. , 2012, Nano letters.

[29]  Dean P. Jones,et al.  Compartmentation of glutathione: implications for the study of toxicity and disease. , 1996, Toxicology and applied pharmacology.

[30]  S W Hell,et al.  Photochromic rhodamines provide nanoscopy with optical sectioning. , 2007, Angewandte Chemie.

[31]  M. Orrit,et al.  Photoblinking of Rhodamine 6G in Poly(vinyl alcohol): Radical Dark State Formed through the Triplet , 2003 .

[32]  Michael W. Davidson,et al.  Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes , 2007, Proceedings of the National Academy of Sciences.

[33]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[34]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[35]  H. Gaub,et al.  Single-Molecule Cut-and-Paste Surface Assembly , 2008, Science.

[36]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[37]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[38]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[39]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[40]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.

[41]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[42]  A. Egner,et al.  Two-color far-field fluorescence nanoscopy based on photoswitchable emitters , 2007 .

[43]  Ricardo Henriques,et al.  PALM and STORM: Unlocking live‐cell super‐resolution , 2011, Biopolymers.

[44]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[46]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[47]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[48]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[49]  Suliana Manley,et al.  Superresolution imaging using single-molecule localization. , 2010, Annual review of physical chemistry.

[50]  Mike Heilemann,et al.  A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. , 2008, Angewandte Chemie.

[51]  M. Davidson,et al.  Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination , 2011, Nature Methods.

[52]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[53]  Rainer Heintzmann,et al.  High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. , 2002, Analytical chemistry.

[54]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[55]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[56]  M. Heilemann,et al.  Live-cell super-resolution imaging with synthetic fluorophores. , 2012, Annual review of physical chemistry.

[57]  Lei Zhu,et al.  Faster STORM using compressed sensing , 2012, Nature Methods.

[58]  David R. Liu,et al.  Photoswitching Mechanism of Cyanine Dyes , 2009, Journal of the American Chemical Society.

[59]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[60]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[61]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[62]  C. Flors,et al.  DNA and chromatin imaging with super‐resolution fluorescence microscopy based on single‐molecule localization , 2011, Biopolymers.

[63]  Sebastian van de Linde,et al.  Live-cell dSTORM with SNAP-tag fusion proteins. , 2011, Nature methods.

[64]  Mike Heilemann,et al.  Super-resolution Imaging Reveals the Internal Architecture of Nano-sized Syntaxin Clusters* , 2012, The Journal of Biological Chemistry.

[65]  Ralf Jungmann,et al.  DNA origami as a nanoscopic ruler for super-resolution microscopy. , 2009, Angewandte Chemie.

[66]  Wolfram Summerer,et al.  Resolving single-molecule assembled patterns with superresolution blink-microscopy. , 2010, Nano letters.

[67]  S. van de Linde,et al.  Live‐Cell Super‐Resolution Imaging Goes Multicolor , 2012, Chembiochem : a European journal of chemical biology.

[68]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[69]  M. Heilemann,et al.  Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy , 2010 .

[70]  Adolf Baeyer,et al.  Ueber eine neue Klasse von Farbstoffen , 1871 .

[71]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[72]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[73]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[74]  Suliana Manley,et al.  Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-Gag virions. , 2012, Nano letters.

[75]  K Weber,et al.  Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[77]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[78]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  N. F. Hulst,et al.  The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Peter J. Verveer,et al.  Chemically Induced Photoswitching of Fluorescent Probes—A General Concept for Super-Resolution Microscopy , 2011, Molecules.

[81]  D. Toomre,et al.  A new wave of cellular imaging. , 2010, Annual review of cell and developmental biology.

[82]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[83]  Virginia W Cornish,et al.  Selective chemical labeling of proteins in living cells. , 2005, Current opinion in chemical biology.

[84]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[85]  S. Hess,et al.  Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. , 2012, Angewandte Chemie.

[86]  H. Gaub,et al.  Optically monitoring the mechanical assembly of single molecules. , 2009, Nature nanotechnology.

[87]  Mike Heilemann,et al.  Measuring localization performance of super-resolution algorithms on very active samples. , 2011, Optics express.

[88]  Jacob Piehler,et al.  Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. , 2012, Nano letters.

[89]  Paul R Selvin,et al.  Fluorescence imaging with one nanometer accuracy: application to molecular motors. , 2005, Accounts of chemical research.

[90]  Bernd Rieger,et al.  Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution , 2012, Journal of Cell Science.

[91]  Hari Shroff,et al.  Advances in the speed and resolution of light microscopy , 2008, Current Opinion in Neurobiology.

[92]  K. Drexhage Structure and Properties of Laser Dyes , 1973 .

[93]  Paul D. Dunne,et al.  Quantitative single-molecule microscopy reveals that CENP-ACnp1 deposition occurs during G2 in fission yeast , 2012, Open Biology.

[94]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[95]  Freya Q. Schafer,et al.  Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. , 2001, Free radical biology & medicine.

[96]  M. Roeffaers,et al.  Super-resolution reactivity mapping of nanostructured catalyst particles. , 2009, Angewandte Chemie.

[97]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[98]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[99]  D. Jones,et al.  Redox sensing: orthogonal control in cell cycle and apoptosis signalling , 2010, Journal of internal medicine.

[100]  Taekjip Ha,et al.  Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. , 2012, Annual review of physical chemistry.

[101]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[102]  Markus Sauer,et al.  Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. , 2005, Angewandte Chemie.

[103]  Jan Vogelsang,et al.  Make them blink: probes for super-resolution microscopy. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[104]  James A Galbraith,et al.  Super-resolution microscopy at a glance , 2011, Journal of Cell Science.

[105]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[106]  Kristin L. Hazelwood,et al.  A bright and photostable photoconvertible fluorescent protein for fusion tags , 2009, Nature Methods.

[107]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[108]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[109]  Jan Vogelsang,et al.  Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy , 2009, Proceedings of the National Academy of Sciences.

[110]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[111]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[112]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[113]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[114]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.