Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors

The aim of this study is to model electric power consumption during a period of economic crisis, characterised by declining gross domestic product. A novel aspect of this study is its use of a Gamma-type diffusion process for short and medium-term forecasting – other techniques that have been used to describe such consumption patterns are not valid in this situation.

[1]  Salah Abosedra,et al.  Electricity consumption and economic growth, the case of Lebanon , 2009 .

[2]  Nuria Rico,et al.  APPROXIMATING THE NONHOMOGENEOUS LOGNORMAL DIFFUSION PROCESS VIA POLYNOMIAL EXOGENOUS FACTORS , 2006, Cybern. Syst..

[3]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[4]  Shanlin Yang,et al.  Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting in China , 2015 .

[5]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[6]  Luigi M. Ricciardi On the transformation of diffusion processes into the Wiener process , 1976 .

[7]  A. Al-Garni,et al.  Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis , 1997 .

[8]  Ahmed Nafidi,et al.  The Stochastic Rayleigh diffusion model: Statistical inference and computational aspects. Applications to modelling of real cases , 2006, Appl. Math. Comput..

[9]  S. Bompadre,et al.  A Stochastic Formulation of the Gompertzian Growth Model for in vitro Bactericidal Kinetics: Parameter Estimation and Extinction Probability , 2005, Biometrical journal. Biometrische Zeitschrift.

[10]  Li Zhou,et al.  On goodness-of-fit testing for ergodic diffusion process with shift parameter , 2012, 1203.6547.

[11]  L. Ricciardi,et al.  First-passage-time densities for time-non-homogeneous diffusion processes , 1997, Journal of Applied Probability.

[12]  Detection, modelling and estimation of non-linear trends by using a non-homogeneous Vasicek stochastic diffusion. Application to CO2 emissions in Morocco , 2012, Stochastic Environmental Research and Risk Assessment.

[13]  A. Pascual,et al.  Three parameter gamma-type growth curve, using a stochastic gamma diffusion model: Computational statistical aspects and simulation , 2011, Math. Comput. Simul..

[14]  Christos H. Skiadas,et al.  A Stochastic Logistic Innovation Diffusion Model Studying the Electricity Consumption in Greece and the United States , 1999 .

[15]  O. Stramer,et al.  On Simulated Likelihood of Discretely Observed Diffusion Processes and Comparison to Closed-Form Approximation , 2007 .

[16]  Peter E. Kloeden,et al.  On effects of discretization on estimators of drift parameters for diffusion processes , 1996, Journal of Applied Probability.

[17]  Erkan Erdogdu Electricity Demand Analysis Using Cointegration and ARIMA Modelling: A case study of Turkey , 2007 .

[18]  Ramón Gutiérrez-Sánchez,et al.  Electricity consumption in Morocco: Stochastic Gompertz diffusion analysis with exogenous factors , 2006 .

[19]  V. Bianco,et al.  Analysis and forecasting of nonresidential electricity consumption in Romania , 2010 .

[20]  M. Sørensen,et al.  The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes , 2007 .

[21]  Ahmed Z. Al-Garni,et al.  Modelling and forecasting monthly electric energy consumption in eastern Saudi Arabia using abductive networks , 1997 .

[22]  Ahmed Nafidi,et al.  A τ-power stochastic gamma diffusion process: Computational statistical inference and simulation aspects. A real example , 2012, Appl. Math. Comput..

[23]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[24]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[25]  Melvin M. Varughese Parameter estimation for multivariate diffusion systems , 2009, Comput. Stat. Data Anal..

[26]  P. W. Zehna Invariance of Maximum Likelihood Estimators , 1966 .

[27]  I. Ozturk,et al.  Electricity consumption and real GDP causality nexus: Evidence from ARDL bounds testing approach for 11 MENA countries , 2011 .

[28]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[29]  V. Giorno,et al.  A stochastic model in tumor growth. , 2006, Journal of theoretical biology.

[30]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .

[31]  A bivariate stochastic Gamma diffusion model: statistical inference and application to the joint modelling of the gross domestic product and CO2 emissions in Spain , 2014, Stochastic Environmental Research and Risk Assessment.

[32]  Kadir Kavaklioglu,et al.  Modeling and prediction of Turkey’s electricity consumption using Support Vector Regression , 2011 .

[33]  A. G. Nobile,et al.  Some remarks on the Rayleigh process , 1986 .

[34]  C. Zucca,et al.  A Monte Carlo Method for the Simulation of First Passage Times of Diffusion Processes , 2001 .

[35]  Ramón Gutiérrez-Sánchez,et al.  The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process , 2009 .