The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators
暂无分享,去创建一个
[1] F. Klopp,et al. On the absolutely continuous spectrum of one-dimensional quasi-periodic schrödinger operators in the adiabatic limit , 2005 .
[2] M. Marx. On the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator , 2005, Asymptot. Anal..
[3] Magali Marx. Etude de perturbations adiabatiques de l'équation de Schrödinger périodique , 2004 .
[4] F. Klopp,et al. GEOMETRIC TOOLS OF THE ADIABATIC COMPLEX WKB METHOD , 2003, math-ph/0304048.
[5] F. Klopp,et al. On the Singular Spectrum for Adiabatic Quasi-Periodic Schrödinger Operators on the Real Line , 2003, math-ph/0304035.
[6] M. Zworski. Quantum resonances and partial differential equations , 2003, math/0304400.
[7] T. Ramond,et al. Breit–Wigner formula at barrier tops , 2003 .
[8] M. Dimassi,et al. A local trace formula for resonances of perturbed periodic Schrödinger operators , 2003 .
[9] M. Dimassi. Resonances for Slowly Varying Perturbations of a Periodic Schrödinger Operator , 2002, Canadian Journal of Mathematics.
[10] F. Klopp,et al. Anderson Transitions for a Family of Almost Periodic Schrödinger Equations in the Adiabatic Case , 2002 .
[11] A. Grigis,et al. Turning points for adiabatically perturbed periodic equations , 2001 .
[12] A. Grigis,et al. Imaginary parts of Stark–Wannier resonances , 1998 .
[13] F. Klopp,et al. The monodromy matrix for a family of almost periodic Schr\"odinger equations in the adiabatic case , 1997, math/9707229.
[14] H. McKean,et al. Hill’s surfaces and their theta functions , 1978 .
[15] Edwin Hewitt,et al. Eigenfunction expansions associated with second-order differential equations, Part II , 1959 .
[16] E. C. Titchmarsh,et al. Reviews , 1947, The Mathematical Gazette.
[17] F. Klopp,et al. A complex WKB method for adiabatic problems , 2001 .
[18] M. Zworski. RESONANCES IN PHYSICS AND GEOMETRY , 1999 .
[19] Setsuro Fujiie,et al. Matrice de scattering et résonances associées à une orbite hétérocline , 1998 .
[20] I. Sigal,et al. Semiclassical theory of shape resonances in quantum mechanics , 1989 .
[21] Bernard Helffer,et al. Résonances en limite semi-classique , 1986 .
[22] G. Weiss,et al. EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .