The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators

In this talk, we report on results about the width of the resonances for a slowly varying perturbation of a periodic operator. The study takes place in dimension one. The perturbation is assumed to be analytic and local in the sense that it tends to a constant at +∞ and at −∞; these constants may differ. Modulo an assumption on the relative position of the range of the local perturbation with respect to the spectrum of the background periodic operator, we show that the width of the resonances is essentially given by a tunneling effect in a suitable phase space. R´´ Dans cet expose, nous decrirons le calcul de la largeur des resonances de perturbations lentes d'operateurs de Schrodinger periodiques. Cetteetude est uni- dimensionnelle. Les perturbations lentes considerees sont analytiques et locales au sens ou elles tendent vers une constante en +∞ et en −∞ ; ces deux constantes peuvent toute- foisetre differentes. Sous des hypotheses adequates sur la position relative de l'image de la perturbation locale par rapport au spectre de l'operateur de Schrodinger periodique, nous demontrons que la largeur des resonances est donnee par un effet tunnel dans un espace de phase adequat.

[1]  F. Klopp,et al.  On the absolutely continuous spectrum of one-dimensional quasi-periodic schrödinger operators in the adiabatic limit , 2005 .

[2]  M. Marx On the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator , 2005, Asymptot. Anal..

[3]  Magali Marx Etude de perturbations adiabatiques de l'équation de Schrödinger périodique , 2004 .

[4]  F. Klopp,et al.  GEOMETRIC TOOLS OF THE ADIABATIC COMPLEX WKB METHOD , 2003, math-ph/0304048.

[5]  F. Klopp,et al.  On the Singular Spectrum for Adiabatic Quasi-Periodic Schrödinger Operators on the Real Line , 2003, math-ph/0304035.

[6]  M. Zworski Quantum resonances and partial differential equations , 2003, math/0304400.

[7]  T. Ramond,et al.  Breit–Wigner formula at barrier tops , 2003 .

[8]  M. Dimassi,et al.  A local trace formula for resonances of perturbed periodic Schrödinger operators , 2003 .

[9]  M. Dimassi Resonances for Slowly Varying Perturbations of a Periodic Schrödinger Operator , 2002, Canadian Journal of Mathematics.

[10]  F. Klopp,et al.  Anderson Transitions for a Family of Almost Periodic Schrödinger Equations in the Adiabatic Case , 2002 .

[11]  A. Grigis,et al.  Turning points for adiabatically perturbed periodic equations , 2001 .

[12]  A. Grigis,et al.  Imaginary parts of Stark–Wannier resonances , 1998 .

[13]  F. Klopp,et al.  The monodromy matrix for a family of almost periodic Schr\"odinger equations in the adiabatic case , 1997, math/9707229.

[14]  H. McKean,et al.  Hill’s surfaces and their theta functions , 1978 .

[15]  Edwin Hewitt,et al.  Eigenfunction expansions associated with second-order differential equations, Part II , 1959 .

[16]  E. C. Titchmarsh,et al.  Reviews , 1947, The Mathematical Gazette.

[17]  F. Klopp,et al.  A complex WKB method for adiabatic problems , 2001 .

[18]  M. Zworski RESONANCES IN PHYSICS AND GEOMETRY , 1999 .

[19]  Setsuro Fujiie,et al.  Matrice de scattering et résonances associées à une orbite hétérocline , 1998 .

[20]  I. Sigal,et al.  Semiclassical theory of shape resonances in quantum mechanics , 1989 .

[21]  Bernard Helffer,et al.  Résonances en limite semi-classique , 1986 .

[22]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .