The use of interval -related expert knowledge in processing 2-D and 3-D data, with an emphasis on applications to geosciences and biosciences

Processing different types of data is one of the main applications of computers, the application for which computers have been originally designed. The more data we need to process, the more computing power we need and thus, the more important it is to use (and design) faster algorithms for data processing. Even processing 1-D data often is very time-consuming, but processing 2-D data (e.g., images) and 3-D data is where we really encounter the limits of the current computer hardware abilities. Data processing algorithms sometimes produce results which contradict the expert knowledge – because this knowledge was not taken into account in the algorithm. For example, a mathematical solution to a seismic inverse problem may lead to un-physically large values of density inside the Earth. At present, in such situations, researchers try to repeatedly modify (“hack”) the process until the results produced by the algorithm agree with this expert knowledge. This process takes up a lot of expert time and – because of the need for numerous iterations – a lot of computer time. To avoid this long, ad-hoc process, it is desirable to explicitly incorporate the expert knowledge into the algorithms, so that the results are always consistent with the expert’s knowledge. Expert knowledge often comes in the form of bounds (i.e., intervals) on the actual values of the physical quantities. In this dissertation, we describe how this intervalrelated expert knowledge can be used in processing 2-D and 3-D data. In data processing, one can distinguish between two types of situations: simpler situations when we directly measure the data that needs to be processed, and more complex situations when the data points can only be measured indirectly, i.e., when these points themselves need to be determined from the measurement results. In this dissertation, we consider both types of data processing. For the case of directly measured 2-D and 3-D data (e.g., images), one of the main problems usually is referencing these images. For the

[1]  Weldon A. Lodwick,et al.  Special issue: interfaces between fuzzy set theory and interval analysis , 2003, Fuzzy Sets Syst..

[2]  George F. Corliss,et al.  Formulation for Reliable Analysis of Structural Frames , 2007, Reliab. Comput..

[3]  Yang H. Huang,et al.  Pavement Analysis and Design , 1997 .

[4]  Cara Gina Schiek Terrain change detection using ASTER optical satellite imagery along the Kunlun fault, Tibet , 2004 .

[5]  J. F. Young,et al.  The Science and Technology of Civil Engineering Materials , 1997 .

[6]  W. Graf,et al.  Fuzzy structural analysis using α-level optimization , 2000 .

[7]  Scott A. Starks,et al.  3-D Image Registration Using Fast Fourier Transform, with Potential Applications to Geoinformatics and Bioinformaticsa , 2006 .

[8]  Vladik Kreinovich,et al.  Fast quantum algorithms for handling probabilistic and interval uncertainty , 2004, Math. Log. Q..

[9]  Vladik Kreinovich,et al.  On-line algorithms for computing mean and variance of interval data, and their use in intelligent systems , 2007, Inf. Sci..

[10]  S. Mcwilliam Anti-optimisation of uncertain structures using interval analysis , 2001 .

[11]  Robert L. Mullen,et al.  Structural Analysis with Fuzzy-Based Load Uncertainty , 1996 .

[12]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[13]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[14]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[15]  R. Roque,et al.  The Use of Time-Temperature Superposition to Fundamentally Characterize Asphaltic Concrete Mixtures at Low Temperatures , 1995 .

[16]  Vladik Kreinovich,et al.  A new Cauchy-based black-box technique for uncertainty in risk analysis , 2004, Reliab. Eng. Syst. Saf..

[17]  Ivo Babuška,et al.  The Problem of Selecting the Shape Functions for a p-Type Finite Element , 1989 .

[18]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[19]  Vladik Kreinovich,et al.  Nested Intervals and Sets: Concepts, Relations to Fuzzy Sets, and Applications , 1996 .

[20]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[21]  R. Mullen,et al.  Uncertainty in mechanics problems-interval-based approach , 2001 .

[22]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[23]  Chandrajit L. Bajaj,et al.  TexMol: interactive visual exploration of large flexible multi-component molecular complexes , 2004, IEEE Visualization 2004.

[24]  R W Cox,et al.  Rotation of NMR images using the 2D chirp‐z transform , 1999, Magnetic resonance in medicine.

[25]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[26]  Vladik Kreinovich,et al.  Beyond Convex? Global Optimization is Feasible Only for Convex Objective Functions: A Theorem , 2005, J. Glob. Optim..

[27]  P. Rosen,et al.  SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH'S SURFACE TOPOGRAPHY AND ITS DEFORMATION , 2000 .

[28]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[29]  Vladik Kreinovich,et al.  Exact Bounds on Sample Variance of Interval Data , 2002 .

[30]  Vinay Siddavanahalli,et al.  Fast Error-bounded Surfaces and Derivatives Computation for Volumetric Particle Data , 2005 .

[31]  Singiresu S. Rao,et al.  Analysis of uncertain structural systems using interval analysis , 1997 .

[33]  Vladik Kreinovich Probabilities, Intervals, What Next? Optimization Problems Related to Extension of Interval Computations to Situations with Partial Information about Probabilities , 2004, J. Glob. Optim..

[34]  Antony Ware,et al.  Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..

[35]  R. Crowther,et al.  Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  Vladik Kreinovich,et al.  Detection of cracks at rivet holes in thin plates using Lamb-wave scanning , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  Vladik Kreinovich,et al.  On Inverse Halftoning : Computational Complexity and Interval Computations , 2005 .

[38]  Vladik Kreinovich,et al.  Computing variance for interval data is NP-hard , 2002, SIGA.

[39]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[40]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[41]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[42]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[43]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[44]  C L Monismith,et al.  Time and temperature dependent properties of asphalt concrete mixes tested as hollow cylinders and subjected to dynamic axial and shear loads , 1994 .

[45]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[46]  Robert L. Mullen,et al.  Development of interval based methods for fuzziness in continuum-mechanics , 1995, Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.

[47]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[48]  Unyime O. Akpan,et al.  Practical fuzzy finite element analysis of structures , 2001 .

[49]  H. D. Frinking Book review , 2005, Netherlands Journal of Plant Pathology.

[50]  H. Raiffa,et al.  Games and Decisions: Introduction and Critical Survey. , 1958 .

[51]  Vladik Kreinovich,et al.  Applications of Continuous Mathematics to Computer Science , 1997 .

[52]  Vladik Kreinovich,et al.  Intelligent mining in image databases, with applications to satellite imaging and to web search , 2001 .

[53]  D. Vasco,et al.  Resolving seismic anisotropy: Sparse matrix methods for geophysical inverse problems , 1998 .

[54]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[55]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[56]  Robert L. Mullen,et al.  Formulation of Fuzzy Finite‐Element Methods for Solid Mechanics Problems , 1999 .

[57]  J. Avouac,et al.  Measuring earthquakes from optical satellite images. , 2000, Applied optics.

[58]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[59]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[61]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[62]  Vladik Kreinovich,et al.  Estimating Uncertainties for Geophysical Tomography , 1998, Reliab. Comput..

[63]  Luca Lucchese,et al.  A Frequency Domain Technique for Range Data Registration , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  V. Kreinovich,et al.  Outlier detection under interval and fuzzy uncertainty: algorithmic solvability and computational complexity , 2003, 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003.

[65]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[66]  Chris P. Pantelides,et al.  Load and resistance convex models for optimum design , 1999 .

[67]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[68]  V. Kreinovich,et al.  Using FFT-based data processing techniques to characterize asphaltic concrete mixtures , 2004, 3rd IEEE Signal Processing Education Workshop. 2004 IEEE 11th Digital Signal Processing Workshop, 2004..

[69]  Vladik Kreinovich,et al.  Towards Combining Probabilistic and Interval Uncertainty in Engineering Calculations , 2004 .

[70]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[71]  Aaron A. Velasco,et al.  High‐resolution Rayleigh wave slowness tomography of central Asia , 2005 .

[72]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[73]  S. G. Rabinovich Measurement Errors: Theory and Practice , 1994 .

[74]  Hans D. Mittelmann,et al.  Some remarks on the discrete maximum-principle for finite elements of higher order , 1981, Computing.

[75]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[76]  C. Morandi,et al.  Registration of Translated and Rotated Images Using Finite Fourier Transforms , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[78]  Vladik Kreinovich,et al.  Computational Complexity and Feasibility of Data Processing and Interval Computations, with Extension to Cases When We Have Partial Information about Probabilities , 2003 .

[79]  Vinay Siddavanahalli,et al.  Compressed representations of macromolecular structures and properties. , 2005, Structure.

[80]  Isaac Elishakoff,et al.  The Bird's Eye View On Finite Element Method For Stochastic Structures , 1997 .

[81]  F. Thouverez,et al.  ANALYSIS OF MECHANICAL SYSTEMS USING INTERVAL COMPUTATIONS APPLIED TO FINITE ELEMENT METHODS , 2001 .

[82]  Søren Nielsen,et al.  Closure of "Interval Algebra to Deal with Pattern Loading and Structural Uncertainties" , 1995 .

[83]  Gabriele Steidl,et al.  Fast convolution with radial kernels at nonequispaced knots , 2004, Numerische Mathematik.

[84]  A. Neumaier Interval methods for systems of equations , 1990 .

[85]  V. Kreinovich,et al.  Fast quantum algorithms for handling probabilistic, interval, and fuzzy uncertainty , 2003, 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003.

[86]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[87]  Olga Kosheleva,et al.  The method of arcs and differential astrometry , 1979 .

[88]  Michel Defrise,et al.  Symmetric Phase-Only Matched Filtering of Fourier-Mellin Transforms for Image Registration and Recognition , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Scott A. Starks,et al.  Towards a General Methodology for Designing Sub-Noise Measurement Procedures , 2004 .

[90]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[91]  Roberto Araiza Optimal FFT-based algorithms for referencing multi-spectral images , 2003 .

[92]  Philippe Nivlet,et al.  Propagating Interval Uncertainties In Supervised Pattern Recognition For Reservoir Characterization , 2001 .

[93]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[94]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[95]  V. Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data, II , 1995 .

[96]  Vladik Kreinovich,et al.  Exact Bounds on Finite Populations of Interval Data , 2005, Reliab. Comput..

[97]  E. Mikhail,et al.  Introduction to modern photogrammetry , 2001 .

[98]  Vladik Kreinovich,et al.  Real-Time Algorithms for Statistical Analysis of Interval Data , 2003 .

[99]  Daniel Berleant,et al.  Bounding the Results of Arithmetic Operations on Random Variables of Unknown Dependency Using Intervals , 1998, Reliab. Comput..

[100]  Josiane Zerubia,et al.  Subpixel image registration by estimating the polyphase decomposition of cross power spectrum , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[101]  Vladik Kreinovich,et al.  Automatic referencing of satellite and radar images , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[102]  S. A. Starks,et al.  Monte-Carlo-Type Techniques for Processing Interval Uncertainty , and Their Engineering Applications , 2004 .

[103]  Robert L. Mullen,et al.  Bounds of Structural Response for All Possible Loading Combinations , 1999 .

[104]  Rémi Michel,et al.  Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan , 2003 .

[105]  A. Peräkylä Book review: EMANUEL A. SCHEGLOFF, Sequence Organization in Interaction: A Primer in Conversation Analysis. Vol. 1. Cambridge: Cambridge University Press, 2007. xvi + 300 pp , 2008 .

[106]  Vladik Kreinovich,et al.  Shadows of fuzzy sets-a natural approach towards describing 2-D and multi-D fuzzy uncertainty in linguistic terms , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[107]  Weldon A. Lodwick,et al.  Estimating and Validating the Cumulative Distribution of a Function of Random Variables: Toward the Development of Distribution Arithmetic , 2003, Reliab. Comput..

[108]  Vladik Kreinovich,et al.  On the optimal choice of quality metric in image compression , 2002, Proceedings Fifth IEEE Southwest Symposium on Image Analysis and Interpretation.

[109]  V. Kreinovich,et al.  Non-destructive testing of aerospace structures: granularity and data mining approach , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[110]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[111]  Masoud Nikravesh,et al.  Soft computing-based computational intelligent for reservoir characterization , 2004, Expert Syst. Appl..

[112]  Hung T. Nguyen,et al.  A First Course in Fuzzy Logic , 1996 .

[113]  R. E. Crippen,et al.  Measurement of Subresolution Terrain Displacements Using Spot Panchromatic Imagery , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[114]  Colin A. Zelt,et al.  Three‐dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin , 1998 .

[115]  Chris Anderson,et al.  Rapid Computation of the Discrete Fourier Transform , 1996, SIAM J. Sci. Comput..

[116]  G. I. Schuëller,et al.  Computational stochastic mechanics – recent advances , 2001 .

[117]  A. V. Cideciyan,et al.  Registration of ocular fundus images: an algorithm using cross-correlation of triple invariant image descriptors , 1995 .

[118]  G. William Walster Philosophy and practicalities of interval arithmetic , 1988 .

[119]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[120]  Vladik Kreinovich,et al.  Towards Foundations of Processing Imprecise Data: From Traditional Statistical Techniques of Processing Crisp Data to Statistical Processing of Fuzzy Data , 2003 .

[121]  Bihong Fu,et al.  Co-Seismic Strike-Slip and Rupture Length Produced by the 2001 Ms 8.1 Central Kunlun Earthquake , 2002, Science.

[122]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[123]  Daniel Berleant,et al.  Statool: A Tool for Distribution Envelope Determination (DEnv), an Interval-Based Algorithm for Arithmetic on Random Variables , 2003, Reliab. Comput..

[124]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[125]  Siegfried M. Rump,et al.  Solving Algebraic Problems with High Accuracy , 1983, IMACS World Congress.

[126]  Michal Křížek,et al.  On the maximum and comparison principles for a steady‐state nonlinear heat conduction problem , 2003 .

[127]  G. Klir,et al.  Fuzzy logic in geology , 2004 .

[128]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[129]  Jaakko Astola,et al.  Microarray quality control , 2004 .

[130]  Michael Radermacher,et al.  RADON TRANSFORM TECHNIQUES FOR ALIGNMENT AND THREE-DIMENSIONAL RECONSTRUCTION FROM RANDOM PROJECTIONS , 1997 .

[131]  Lung-an Ying,et al.  Partial differential equations and the finite element method , 2007, Math. Comput..

[132]  Vladik Kreinovich,et al.  Which Algorithms Are Feasible And Which Are Not Depends On The Geometry Of Space-Time , 1995 .

[133]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[134]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[135]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[136]  V. Kreinovich,et al.  A new method of measuring-strong currents by their magnetic field , 1997 .

[137]  Vladik Kreinovich,et al.  Novel Approaches to Numerical Software with Result Verification , 2004, Numerical Software with Result Verification.

[138]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[139]  Olga Kosheleva,et al.  Interval estimates for closure-phase and closure-amplitude imaging in radio astronomy , 1992 .

[140]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .

[141]  Vladik Kreinovich,et al.  An IDL/ENVI Implementation of the FFT Based Algorithm for Automatic Image Registration , 2003 .

[142]  Robert C. Williamson,et al.  Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds , 1990, Int. J. Approx. Reason..

[143]  D. Berleant Automatically Verified Arithmetic on Probability Distributions and Intervals , 1996 .

[144]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[145]  Vladik Kreinovich,et al.  Interval-Valued and Fuzzy-Valued Random Variables: From Computing Sample Variances to Computing Sample Covariances , 2004 .

[146]  Peter C. Fishburn,et al.  Nonlinear preference and utility theory , 1988 .

[147]  Vinay Siddavanahalli,et al.  An Adaptive Irregularly Spaced Fourier Method for Protein-Protein Docking ∗ , 2005 .

[148]  Gang Xiang Fast Algorithm for Computing the Upper Endpoint of Sample Variance for Interval Data: Case of Sufficiently Accurate Measurements , 2006, Reliab. Comput..

[149]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[150]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[151]  Robert L. Mullen,et al.  Penalty-Based Solution for the Interval Finite-Element Methods , 2005 .

[152]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[153]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[154]  Ilya Shmulevich,et al.  Binary analysis and optimization-based normalization of gene expression data , 2002, Bioinform..

[155]  Harrison M. Wadsworth Handbook of Statistical Methods for Engineers and Scientists , 1990 .

[156]  Hassan Foroosh,et al.  Extension of phase correlation to subpixel registration , 2002, IEEE Trans. Image Process..

[157]  Su-huan Chen,et al.  Interval static displacement analysis for structures with interval parameters , 2002 .

[158]  Semih Ergintav,et al.  Bulletin of the Seismological Society of America , 2002 .

[159]  Paul A. Rosen,et al.  The Mw 7.1, Hector Mine, California earthquake: surface rupture, surface displacement field, and fault slip solution from ERS SAR data , 2001 .

[160]  G. R. Keller,et al.  Towards Combining Probabilistic, Interval, Fuzzy Uncertainty, and Constraints: On the Example of Inverse Problem in Geophysics , 2007 .

[161]  Vladik Kreinovich,et al.  New Algorithms for Statistical Analysis of Interval Data , 2004, PARA.

[162]  Vladik Kreinovich,et al.  Outlier Detection under Interval Uncertainty: Algorithmic Solvability and Computational Complexity , 2005, Reliab. Comput..

[163]  R. Jackson Inequalities , 2007, Algebra for Parents.

[164]  Yann Klinger,et al.  Slip-Partitioned Surface Breaks for the Mw 7.8 2001 Kokoxili Earthquake, China , 2005 .

[165]  Roberto Araiza,et al.  Towards Optimal Mosaicking of Multi-Spectral Images , 2000 .

[166]  Gabriele Steidl,et al.  A note on fast Fourier transforms for nonequispaced grids , 1998, Adv. Comput. Math..

[167]  Vladik Kreinovich,et al.  Interval Finite Element Methods: New Directions , 2006 .

[168]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[169]  Stephen A Gibson An optimal FFT-based algorithm for mosaicking images , 1999 .

[170]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[171]  Philippe Nivlet,et al.  A new methodology to account for uncertainties in 4D seismic interpretation , 2001 .

[172]  A. Krishna Sinha,et al.  Geoinformatics : data to knowledge , 2006 .

[173]  S. Riazanofi SPOT Satellite Geometry Handbook , 2002 .

[174]  Vladik Kreinovich,et al.  Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Potential Engineering Applications , 2006, Reliab. Comput..

[175]  John A. Hole,et al.  Nonlinear high‐resolution three‐dimensional seismic travel time tomography , 1992 .

[176]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[177]  Tom Schanz,et al.  Mechanical Models with Interval Parameters , 2003 .

[178]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[179]  Vladik Kreinovich,et al.  For unknown-but-bounded errors, interval estimates are often better than averaging , 1996, SGNM.

[180]  Singiresu S Rao,et al.  Numerical solution of fuzzy linear equations in engineering analysis , 1998 .

[181]  Arnold Neumaier,et al.  Linear Systems with Large Uncertainties, with Applications to Truss Structures , 2007, Reliab. Comput..

[182]  J. Avouac,et al.  Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured from SPOT images , 2002 .

[183]  Leszek Demkowicz,et al.  Fully automatic hp-adaptivity in three dimensions , 2006 .

[184]  Chris P. Pantelides,et al.  COMPARISON OF FUZZY SET AND CONVEX MODEL THEORIES IN STRUCTURAL DESIGN , 2001 .

[185]  Ramon E. Moore,et al.  Interval analysis and fuzzy set theory , 2003, Fuzzy Sets Syst..

[186]  Vladik Kreinovich,et al.  Using expert knowledge in solving the seismic inverse problem , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[187]  Leszek Demkowicz,et al.  Parallel, fully automatic hp-adaptive 2d finite element package , 2006 .

[188]  J. Tinsley Oden,et al.  Verification and validation in computational engineering and science: basic concepts , 2004 .

[189]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[190]  Tomáš Vejchodský,et al.  On the Nonnegativity Conservation in Semidiscrete Parabolic Problems , 2004 .

[191]  Ann Q. Gates,et al.  A community effort to construct a gravity database for the United States and an associated Web portal , 2006 .

[192]  E. Süli,et al.  A spectral method of characteristics for hyperbolic problems , 1991 .

[193]  Andrei Finkelstein,et al.  Astrometrical and geodetical applications of VLBI “ARC METHOD” , 1978 .

[194]  J. Fodor,et al.  Evaluation of Uncertainties and Risks in Geology , 2004 .

[195]  Lov K. Grover From Schrödinger’s equation to the quantum search algorithm , 2001, quant-ph/0109116.

[196]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[197]  C. D. Kuglin,et al.  The phase correlation image alignment method , 1975 .

[198]  R. Parker Geophysical Inverse Theory , 1994 .

[199]  R. Jozsa,et al.  The Geometric Universe , 1998 .

[200]  Kenneth I. Kellermann,et al.  Galactic and Extragalactic Radio Astronomy , 1974 .

[201]  Ann Q. Gates,et al.  GEON: Geophysical Data Add the 3rd Dimension in Geospatial Studies , 2004 .

[202]  Frederick J. Ryerson,et al.  The 14 November 2001, Mw = 7.8 Kokoxili Earthquake in Northern Tibet (Qinghai Province, China) , 2002 .

[203]  R. Roque,et al.  A mechanics-based prediction model for thermal cracking of asphaltic concrete pavements , 1994 .

[204]  N. Rowe Absolute Bounds on the Mean and Standard Deviation of Transformed Data for Constant-Sign-Derivative Transformations , 1988 .

[205]  Vladik Kreinovich,et al.  Automatic referencing of multi-spectral images , 2002, Proceedings Fifth IEEE Southwest Symposium on Image Analysis and Interpretation.

[206]  Tom METHOD OF LINES AND CONSERVATION OF NONNEGATIVITY , 2004 .

[207]  Achintya Haldar,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .

[208]  Vladik Kreinovich,et al.  Computing Higher Central Moments for Interval Data , 2004 .

[209]  Roberto Araiza,et al.  Discrete conservation of nonnegativity for elliptic problems solved by the hp-FEM , 2007, Math. Comput. Simul..

[210]  Patrick Suppes,et al.  Foundations of measurement , 1971 .

[211]  William E. Johnston,et al.  Virtual Frog Dissection: Interactive 3D Graphics via the Web , 1995, Comput. Networks ISDN Syst..

[212]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .