Collisions of random walks

A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z d with d ≥ 19 and the uniform spanning tree in Z 2 all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.

[1]  Yuval Peres,et al.  Recurrent Graphs where Two Independent Random Walks Collide Finitely Often , 2004 .

[2]  Two random walks on the open cluster of ℤ2 meet infinitely often , 2010 .

[3]  M. Barlow,et al.  Characterization of sub‐Gaussian heat kernel estimates on strongly recurrent graphs , 2005 .

[4]  M. Barlow Random walks on supercritical percolation clusters , 2003, math/0302004.

[5]  Gady Kozma,et al.  A Resistance Bound Via An Isoperimetric Inequality , 2005, Comb..

[6]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[7]  N. Lanchier,et al.  Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions , 2009, 0911.3107.

[8]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[9]  H. Poincaré,et al.  Percolation ? , 1982 .

[10]  M. Barlow,et al.  Parabolic Harnack Inequality and Local Limit Theorem for Percolation Clusters , 2008, 0810.2467.

[11]  M. Barlow,et al.  Spectral Dimension and Random Walks on the Two Dimensional Uniform Spanning Tree , 2009, 0912.4765.

[12]  Martin T. Barlow,et al.  Random walk on the incipient infinite cluster on trees , 2005 .

[13]  David A. Freedman,et al.  The Tail $\sigma$-Field of a Markov Chain and a Theorem of Orey , 1964 .

[14]  Dayue Chen,et al.  A note on the finite collision property of random walks , 2008 .

[15]  L. Rogers,et al.  Coupling of Multidimensional Diffusions by Reflection , 1986 .

[16]  Recurrence of random walk traces , 2006, math/0603060.

[17]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[18]  Takashi Kumagai,et al.  Heat kernel estimates on the incipient infinite cluster for critical branching processes (Proceedings of RIMS Workshop on Stochastic Analysis and Applications) , 2008 .

[19]  T. Konstantopoulos Ballot theorems revisited , 1995 .

[20]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[21]  D. Croydon,et al.  Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive , 2008, 1210.6193.

[22]  Allan F. Abrahamse The Tail Field of a Markov Chain , 1969 .