A GENERAL PURPOSE SCALE-INDEPENDENT MCMC ALGORITHM

[1]  S. J. Swift,et al.  Diesel soot mass calculation in real-time with a differential mobility spectrometer , 2007 .

[2]  S. DeGennaro,et al.  New Techniques to Determine Ages of Open Clusters Using White Dwarfs , 2006, astro-ph/0611826.

[3]  C. Firmani,et al.  Long gamma-ray burst prompt emission properties as a cosmological tool , 2006, astro-ph/0605267.

[4]  Jo Eidsvik,et al.  On directional Metropolis–Hastings algorithms , 2006, Stat. Comput..

[5]  Ashley F. Emery,et al.  Using Bayesian inference for parameter estimation when the system response and experimental conditions are measured with error and some variables are considered as nuisance variables , 2006 .

[6]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[7]  J. Christen,et al.  Radiocarbon peat chronologies and environmental change , 2005 .

[8]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[9]  J. Kadane,et al.  Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .

[10]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[11]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[12]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[13]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[14]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[15]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[16]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[17]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[18]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[19]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..