Review and classification of recent observers applied in chemical process systems

Abstract Observers are computational algorithms designed to estimate unmeasured state variables due to the lack of appropriate estimating devices or to replace high-priced sensors in a plant. It is always important to estimate those states prior to developing state feedback laws for control and to prevent process disruptions, process shutdowns and even process failures. The diversity of state estimation techniques resulting from intrinsic differences in chemical process systems makes it difficult to select the proper technique from a theoretical or practical point of view for design and implementation in specific applications. Hence, in this paper, we review the applications of recent observers to chemical process systems and classify them into six classes, which differentiate them with respect to their features and assists in the design of observers. Furthermore, we provide guidelines in designing and choosing the observers for particular applications, and we discuss the future directions for these observers.

[1]  S. Biagiola,et al.  STATE ESTIMATION IN NONLINEAR PROCESSES. APPLICATION TO PH PROCESS CONTROL , 2002 .

[2]  Ramon Vilanova,et al.  Observer−Controller Design for a Class of Stable/Unstable Inverse Response Processes , 2009 .

[3]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[4]  Costas Kravaris,et al.  Nonlinear Observer Design for Process Monitoring , 2000 .

[5]  J. Daafouz,et al.  Parameter-dependent state observer design for affine LPV systems , 2001 .

[6]  Alfredo Germani,et al.  Observability through delayed measurements: a new approach to state observers design , 2010, Int. J. Control.

[7]  Michel Benne,et al.  Nonlinear predictive control based on artificial neural network model for industrial crystallization , 2010 .

[8]  Ricardo Aguilar-López,et al.  Integral observers for uncertainty estimation in continuous chemical reactors: algebraic-differential approach , 2003 .

[9]  Denis Dochain State observers for tubular reactors with unknown kinetics , 2000 .

[10]  Panos J. Antsaklis,et al.  Set-valued observer design for a class of uncertain linear systems with persistent disturbance and measurement noise , 2003 .

[11]  Tatjana Stykel,et al.  Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..

[12]  Silvina I. Biagiola,et al.  Application of state estimation based NMPC to an unstable nonlinear process , 2004 .

[13]  H. Hammouri,et al.  Non-linear observer based on the Euler discretization , 2002 .

[14]  Mohammad Shahrokhi,et al.  Two observer-based nonlinear control approaches for temperature control of a class of continuous stirred tank reactors , 2008 .

[15]  Sirish L. Shah,et al.  State estimation and nonlinear predictive control of autonomous hybrid system using derivative free state estimators , 2010 .

[16]  Rafael Martínez-Guerra,et al.  State estimation for nonlinear systems under model unobservable uncertainties: application to continuous reactor , 2005 .

[17]  Kunsoo Huh,et al.  Observer design methodology for stochastic and deterministic robustness , 2008, Int. J. Control.

[18]  Michael Zeitz,et al.  Design of a nonlinear distributed parameter observer for a pressure swing adsorption plant , 2002 .

[19]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[20]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[21]  Yann Le Gorrec,et al.  Passivity-based nonlinear control of CSTR via asymptotic observers , 2013, Annu. Rev. Control..

[22]  Sami Othman,et al.  Nonlinear observers for parameter estimation in a solution polymerization process using infrared spectroscopy , 2008 .

[23]  Jesús Picó,et al.  Specific growth rate estimation in (fed-)batch bioreactors using second-order sliding observers , 2011 .

[24]  A. E. Farell,et al.  Design of a stable adaptive nonlinear observer for an exothermic stirred tank reactor , 1996 .

[25]  Cédric Damour,et al.  NMPC of an industrial crystallization process using model-based observers , 2010 .

[26]  Mohd Azlan Hussain,et al.  Hybrid neural network—prior knowledge model in temperature control of a semi-batch polymerization process , 2004 .

[27]  Masoud Rahimi,et al.  Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations , 2012 .

[28]  Juergen Hahn,et al.  Determining Optimal Sensor Locations for State and Parameter Estimation for Stable Nonlinear Systems , 2005 .

[29]  YaLi Dong,et al.  Observer design for a class of multi-input multi-output nonlinear systems , 2011, Int. J. Syst. Sci..

[30]  Darci Odloak,et al.  Observer-based fault diagnosis in chemical plants , 2005 .

[31]  Jesús Picó,et al.  Smooth sliding-mode observers for specific growth rate and substrate from biomass measurement , 2009 .

[32]  Ian K. Craig,et al.  Fractional order and BICO disturbance observers for a run-of-mine ore milling circuit , 2012 .

[33]  Leang-San Shieh,et al.  Actuator fault detection and performance recovery with Kalman filter-based adaptive observer , 2007, Int. J. Gen. Syst..

[34]  Hsiao-Ping Huang,et al.  A sliding observer for nonlinear process control , 1997 .

[35]  P. R. Patnaik,et al.  Application of Fuzzy Logic for State Estimation of a Microbial Fermentation with Dual Inhibition and Variable Product Kinetics , 1997 .

[36]  J. Hahn,et al.  On the use of empirical gramians for controllability and observability analysis , 2005, Proceedings of the 2005, American Control Conference, 2005..

[37]  Davide Fissore,et al.  Robust control in presence of parametric uncertainties: Observer-based feedback controller design , 2008 .

[38]  Néstor Thome,et al.  Gramian matrices and balanced model of generalized systems , 2004, Appl. Math. Comput..

[39]  Saibal Ganguly,et al.  Observer-based control algorithms for a distillation column , 2006 .

[40]  Hanna M. Härdin,et al.  Observers for linear positive systems , 2007 .

[41]  Elbrous M. Jafarov,et al.  Robust reduced-order sliding mode observer design , 2011, Int. J. Syst. Sci..

[42]  K. Fiaty,et al.  Implementation of observer for on-line estimation of concentration in continuous-stirred membrane bioreactor: Application to the fermentation of lactose , 1999 .

[43]  Hans Zwart,et al.  Luenberger boundary observer synthesis for Sturm–Liouville systems , 2010, Int. J. Control.

[44]  Paul M.J. Van den Hof,et al.  A comparison of nonlinear observers for output feedback model-based control of seeded batch crystallization processes , 2011 .

[45]  Masoud Soroush,et al.  A method of robust multi-rate state estimation , 2003 .

[46]  Jianming Lian,et al.  Reduced-order observer-based decentralised control of non-linear interconnected systems , 2009, Int. J. Control.

[47]  Michel Perrier,et al.  Design of a multi-model observer-based estimator for anaerobic reactor monitoring , 2006, Comput. Chem. Eng..

[48]  S Lee Observer for discrete-time Lipschitz non-linear systems with delayed output , 2011 .

[49]  Wen-Jeng Liu Design of decentralised variable structure observer for mismatched nonlinear uncertain large-scale systems , 2011, Int. J. Syst. Sci..

[50]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.

[51]  Eduardo Gómez-Sánchez,et al.  Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems , 2004 .

[52]  Amiya K. Jana,et al.  A nonlinear exponential observer for a batch distillation , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[53]  D. D. Ruscio,et al.  Linear Polynomial Estimator: The State Observer , 2009 .

[54]  Aline Carvalho da Costa,et al.  Optimization of a large scale industrial reactor by genetic algorithms , 2008 .

[55]  Philippe Bogaerts,et al.  Parameter identification for state estimation—application to bioprocess software sensors , 2004 .

[56]  Robert E. Skelton,et al.  Assigning controllability and observability Gramians in feedback control , 1991 .

[57]  Philippe Bogaerts,et al.  State observer scheme for joint kinetic parameter and state estimation , 2008 .

[58]  S. M. Khazraee,et al.  Composition Estimation of Reactive Batch Distillation by Using Adaptive Neuro-Fuzzy Inference System , 2010 .

[59]  D. Himmelblau Accounts of Experiences in the Application of Artificial Neural Networks in Chemical Engineering , 2008 .

[60]  Julio R. Banga,et al.  Optimal sensor location and reduced order observer design for distributed process systems , 2002 .

[61]  Kaan Yetilmezsoy,et al.  An adaptive neuro-fuzzy approach for modeling of water-in-oil emulsion formation , 2011 .

[62]  Françoise Couenne,et al.  Passivity based controller and observer of exothermic chemical reactors , 2012 .

[63]  Javier Fernández de Cañete,et al.  Dual composition control and soft estimation for a pilot distillation column using a neurogenetic design , 2012, Comput. Chem. Eng..

[64]  Jing Wang,et al.  Dynamic Modeling and Optimal Control of Batch Reactors, Based on Structure Approaching Hybrid Neural Networks , 2011 .

[65]  M. Soroush Nonlinear state-observer design with application to reactors , 1997 .

[66]  André Desbiens,et al.  Modified error decentralized control with observer backstepping , 2002 .

[67]  Javad Poshtan,et al.  Design of Nonlinear Unknown Input Observer for Process Fault Detection , 2010 .

[68]  Iqbal M. Mujtaba,et al.  Performance of different types of controllers in tracking optimal temperature profiles in batch reactors , 2000 .

[69]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .

[70]  Li Jia,et al.  A genetic neural fuzzy system-based quality prediction model for injection process , 2002 .

[71]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[72]  D. M. Himmelblau,et al.  Online prediction of polymer product quality in an industrial reactor using recurrent neural networks , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[73]  Sirish L. Shah,et al.  Nonlinear Bayesian state estimation: Review and recent trends , 2011, 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP).

[74]  Ch. Venkateswarlu,et al.  Optimal state estimation of multicomponent batch distillation , 2001 .

[75]  Umesh Vaidya,et al.  Observability gramian for nonlinear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[76]  K. Brudzewski,et al.  Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach , 2006 .

[77]  P. Kaboré,et al.  Disturbance attenuation using proportional integral observers , 2001 .

[78]  Sarah K. Spurgeon,et al.  Sliding mode observers: a survey , 2008, Int. J. Syst. Sci..

[79]  Martin Guay,et al.  Adaptive nonlinear observers of microbial growth processes , 2002 .

[80]  Kim B. McAuley,et al.  Selection of Parameters for Updating in On-line Models , 2001 .

[81]  Kaan Yetilmezsoy,et al.  A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. , 2010, Journal of hazardous materials.

[82]  Alexander S. Poznyak,et al.  Output integral sliding mode control based on algebraic hierarchical observer , 2007, Int. J. Control.

[83]  Canan Özgen,et al.  State estimation and inferential control for a reactive batch distillation column , 2010, Eng. Appl. Artif. Intell..

[84]  Moshood J. Olanrewaju,et al.  Estimator-based control of reactive distillation system: Application of an extended Kalman filtering , 2006 .

[85]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[86]  Dominique Bonvin,et al.  On the design of integral observers for unbiased output estimation in the presence of uncertainty , 2011 .

[87]  Brian Roffel,et al.  A comparison of the performance of profile position and composition estimators for quality control in binary distillation , 2003, Comput. Chem. Eng..

[88]  Sirish L. Shah,et al.  A comparison of simultaneous state and parameter estimation schemes for a continuous fermentor reactor , 2010 .

[89]  R. Senthil,et al.  Nonlinear State Estimation Using Fuzzy Kalman Filter , 2006 .

[90]  Isaac Chairez,et al.  Reconstruction of Dynamics of Aqueous Phenols and Their Products Formation in Ozonation Using Differential Neural Network Observers , 2007 .

[91]  Rubens Maciel Filho,et al.  Soft sensors development for on-line bioreactor state estimation , 2000 .

[92]  Mohammad Farrokhi,et al.  Chattering free with noise reduction in sliding-mode observers using frequency domain analysis , 2010 .

[93]  Sirish L. Shah,et al.  From data to diagnosis and control using generalized orthonormal basis filters. Part II: Model predictive and fault tolerant control , 2006 .

[94]  Mohd Azlan Hussain,et al.  Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network , 2002 .

[95]  D. Luenberger An introduction to observers , 1971 .

[96]  Jun Yang,et al.  Disturbance rejection of dead-time processes using disturbance observer and model predictive control , 2011 .

[97]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[98]  Bart De Schutter,et al.  Observers for linear distributed-parameter systems: A survey , 2011, 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE).

[99]  Jose Alvarez-Ramirez,et al.  Sliding mode observer-based control for a class of bioreactors , 2001 .

[100]  L. Biegler,et al.  Constrained particle filter approach to approximate the arrival cost in Moving Horizon Estimation , 2011 .

[101]  Jose Alvarez-Ramirez,et al.  Nonlinear regulation for a continuous bioreactor via a numerical uncertainty observer , 1998 .

[102]  Alexander S. Poznyak,et al.  Hierarchical second-order sliding-mode observer for linear time invariant systems with unknown inputs , 2007 .

[103]  Mohd Azlan Hussain,et al.  Control of a Batch Polymerization System Using Hybrid Neural Network - First Principle Model , 2008 .

[104]  Andreas Bück,et al.  Two state estimators for the barium sulfate precipitation in a semi-batch reactor , 2009 .

[105]  Scott C. James,et al.  Comparative study of black-box and hybrid estimation methods in fed-batch fermentation , 2002 .

[106]  Feng-Sheng Wang,et al.  On-line estimation of biomass and intracellular protein for recombinant Escherichia coli cultivated in batch and fed-batch modes , 2007 .

[107]  Mohammed M'Saad,et al.  High gain observer with updated gain for a class of MIMO nonlinear systems , 2011, Int. J. Control.

[108]  Costas Kravaris,et al.  Advances and selected recent developments in state and parameter estimation , 2013, Comput. Chem. Eng..

[109]  Edgar N. Sánchez,et al.  Discrete-Time Reduced Order Neural Observers for Uncertain Nonlinear Systems , 2010, Int. J. Neural Syst..

[110]  Amiya K. Jana,et al.  Nonlinear state estimation and control of a refinery debutanizer column , 2009, Comput. Chem. Eng..

[111]  Philippe Bogaerts,et al.  Hybrid full horizon-asymptotic observer for bioprocesses , 2002 .

[112]  Yoshitaka Togari,et al.  Anti-saturation discrete-time nonlinear controllers and observers , 2000 .

[113]  K. Busawon,et al.  An observer design for uniformly observable non-linear systems , 2000 .

[114]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[115]  A. Vande Wouwer,et al.  State and input estimation in phytoplanktonic cultures using quasi-unknown input observers ☆ , 2011 .

[116]  Vicenç Puig,et al.  Observer Gain Effect in Linear Interval Observer-Based Fault Detection , 2007 .

[117]  A. Vande Wouwer,et al.  Improving continuous–discrete interval observers with application to microalgae-based bioprocesses , 2009 .

[118]  Jianming Lian,et al.  On decentralised control of non-linear interconnected systems , 2009, Int. J. Control.

[119]  Jinyoung Kim,et al.  Neural network modeling of temperature behavior in an exothermic polymerization process , 2002, Neurocomputing.

[120]  Jun Yang,et al.  Nonlinear disturbance observer-based control for multi-input multi-output nonlinear systems subject to mismatching condition , 2012, Int. J. Control.

[121]  K. M. Boaventura,et al.  State observers for a biological wastewater nitrogen removal process in a sequential batch reactor. , 2001, Bioresource technology.

[122]  Sebastião Feyo de Azevedo,et al.  Databank transfer-of-information, shortcut and exact estimators used in the wastewater biological treatment process identification , 2000 .

[123]  Alessandro Astolfi,et al.  Global complete observability and output-to-state stability imply the existence of a globally convergent observer , 2006, Math. Control. Signals Syst..

[124]  Denis Dochain,et al.  Asymptotic observers for stirred tank reactors , 1992 .

[125]  José Luis Figueroa,et al.  A high gain nonlinear observer: application to the control of an unstable nonlinear process , 2004, Comput. Chem. Eng..

[126]  V. Alcaraz-González,et al.  Robust Control of Volatile Fatty Acids in Anaerobic Digestion Processes , 2008 .

[127]  L. Biegler,et al.  A Moving Horizon Estimator for processes with multi-rate measurements: A Nonlinear Programming sensitivity approach , 2012 .

[128]  Francis J. Doyle,et al.  Polymer grade transition control using advanced real-time optimization software , 2004 .

[129]  José M. Asua,et al.  Control of Molecular Weight Distribution in Emulsion Polymerization Using On-Line Reaction Calorimetry , 2001 .

[130]  Wei Liu An extended Kalman filter and neural network cascade fault diagnosis strategy for the glutamic acid fermentation process , 1999, Artif. Intell. Eng..

[131]  Denis Dochain,et al.  State and parameter estimation in chemical and biochemical processes: a tutorial , 2003 .

[132]  Jaime A. Moreno,et al.  DISSIPATIVITY-BASED OBSERVER AND FEEDBACK CONTROL DESIGN FOR A CLASS OF CHEMICAL REACTORS , 2007 .

[133]  Hyun-Ku Rhee,et al.  Extended Kalman filter-based nonlinear model predictive control for a continuous MMA polymerization reactor , 1999 .

[134]  Elmer Ccopa Rivera,et al.  Development of real-time state estimators for reaction–separation processes: A continuous flash fermentation as a study case , 2010 .

[135]  B. Bakshi,et al.  Bayesian estimation via sequential Monte Carlo sampling: Unconstrained nonlinear dynamic systems , 2004 .

[136]  Guillermo Fernández-Anaya,et al.  Observer-Based Smith Prediction Scheme for Unstable Plus Time Delay Processes , 2007 .

[137]  Hari Om Gupta,et al.  ANN based estimator for distillation—inferential control , 2005 .

[138]  V. Chitanov,et al.  Neural-fuzzy modelling of polymer quality in batch polymerization reactors , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[139]  Sirish L. Shah,et al.  From data to diagnosis and control using generalized orthonormal basis filters. Part I: Development of state observers , 2005 .

[140]  Hava Siegelmann,et al.  Application of expert networks for predicting proteins secondary structure. , 2007, Biomolecular engineering.

[141]  Minsung Kim,et al.  Control of mold level in continuous casting based on a disturbance observer , 2011 .

[142]  M. A. Abdelghani-Idrissi,et al.  Heat exchanger Kalman filtering with process dynamic acknowledgement , 2004, Comput. Chem. Eng..

[143]  A. Lynch,et al.  An efficient method for observer design with approximately linear error dynamics , 2004 .

[144]  Massimiliano Barolo,et al.  Geometric observer for a distillation column : Development and experimental testing , 2005 .

[145]  S. K. Lahiri,et al.  Development of an artificial neural network correlation for prediction of hold-up of slurry transport in pipelines , 2008 .

[146]  Efrén Aguilar-Garnica,et al.  A robust monitoring tool for distributed parameter plug flow reactors , 2011, Comput. Chem. Eng..

[147]  Vijander Singh,et al.  ANN-based estimator for distillation using Levenberg-Marquardt approach , 2007, Eng. Appl. Artif. Intell..

[148]  Lei Wang,et al.  Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases , 2006 .

[149]  Ricardo Aguilar López,et al.  STATE ESTIMATION FOR NONLINEAR SYSTEMS UNDER MODEL UNCERTAINTIES: A CLASS OF SLIDING-MODE OBSERVERS , 2005 .

[150]  Juergen Hahn,et al.  State estimation for high-dimensional chemical processes , 2005, Comput. Chem. Eng..

[151]  Eric Busvelle,et al.  An adaptive high-gain observer for wastewater treatment systems , 2011 .

[152]  Isaac Chairez,et al.  Application of the differential neural network observer to the kinetic parameters identification of the anthracene degradation in contaminated model soil. , 2007, Journal of hazardous materials.

[153]  Jean-Luc Gouzé,et al.  Closed loop observers bundle for uncertain biotechnological models , 2004 .

[154]  Pierdomenico Pepe,et al.  Observer-based nonlinear control law for a continuous stirred tank reactor with recycle ☆ , 2011 .

[155]  Christos Georgakis,et al.  Online Estimation of Reaction Rates in Semicontinuous Reactors , 1995 .

[156]  Ahmad Reza Vali,et al.  Design of sliding mode controller for the optimal control of fed-batch cultivation of recombinant E. coli , 2009 .

[157]  Eugénio C. Ferreira,et al.  A study on the convergence of observer-based kinetics estimators in stirred tank bioreactors , 1996 .

[158]  Mohammad Noshad,et al.  Prediction of moisture content in pre-osmosed and ultrasounded dried banana using genetic algorithm and neural network , 2011 .

[159]  Philippe Bogaerts,et al.  Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation , 2006 .

[160]  Costas Kravaris,et al.  Nonlinear observer design for state and disturbance estimation , 2004 .

[161]  B. Marxa,et al.  Observers design for uncertain Takagi – Sugeno systems with unmeasurable premise variables and unknown inputs . Application to a wastewater treatment plant , 2011 .

[162]  Mondher Farza,et al.  Nonlinear observers for parameter estimation in bioprocesses , 1997 .

[163]  M. Lashkarbolooki,et al.  Using Artificial Neural Network to Predict the Pressure Drop in a Rotating Packed Bed , 2012 .

[164]  Guanghui Su,et al.  Applications of genetic neural network for prediction of critical heat flux , 2010 .

[165]  J. Alvarez,et al.  On the effect of the estimation structure in the functioning of a nonlinear copolymer reactor estimator , 2004 .

[166]  R F Escobar,et al.  Sensor fault detection and isolation via high-gain observers: application to a double-pipe heat exchanger. , 2011, ISA transactions.

[167]  Costas Kravaris,et al.  Discrete-time nonlinear observer design using functional equations , 2001 .

[168]  Nabil Abdel-Jabbar,et al.  State estimation and state feedback control for continuous fluidized bed dryers , 2005 .

[169]  Davide Fissore,et al.  Observer design for the Selective Catalytic Reduction of NOx in a loop reactor , 2007 .

[170]  R. A. Wright,et al.  Nonlinear observer design for the slow states of a singularly perturbed system , 2005, Comput. Chem. Eng..

[171]  K. Leblebicioglu,et al.  STATE ESTIMATOR DESIGN FOR MULTICOMPONENT BATCH DISTILLATION COLUMNS , 2005 .

[172]  J. A. Wilson,et al.  A generalised approach to process state estimation using hybrid artificial neural network/mechanistic models , 1997 .

[173]  Thierry-Marie Guerra,et al.  Fouling detection in a heat exchanger by observer of Takagi-Sugeno type for systems with unknown polynomial inputs , 2012, Eng. Appl. Artif. Intell..

[174]  Jean-Luc Gouzé,et al.  Estimation of uncertain models of activated sludge processes with interval observers , 2001 .

[175]  A. K. Kordon,et al.  On-line expert system for odor complaints in a refinery , 1996 .

[176]  Denis Dochain,et al.  Enthalpy based modelling and design of asymptotic observers for chemical reactors , 2009, Int. J. Control.

[177]  Lorenz T. Biegler,et al.  Stability of a class of discrete-time nonlinear recursive observers , 2010 .

[178]  Kojiro Hagino,et al.  Observer-based robust control giving consideration to transient behaviour for linear systems with , 2002 .

[179]  M. Darouach,et al.  A nonlinear observer design for an activated sludge wastewater treatment process , 2009 .

[180]  R. Martinez-Guerra,et al.  On nonlinear observers , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[181]  R. L. Mishkov,et al.  Non-linear observer design by reduced generalized observer canonical form , 2005 .

[182]  Fanglai Zhu,et al.  State estimation and unknown input reconstruction via both reduced-order and high-order sliding mode observers☆ , 2012 .

[183]  Shihua Li,et al.  Disturbance observer based multi-variable control of ball mill grinding circuits , 2009 .

[184]  Amiya K. Jana,et al.  Nonlinear adaptive control algorithm for a multicomponent batch distillation column , 2007 .

[185]  Kevin M. Passino,et al.  Genetic adaptive observers , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[186]  Zhiqiang Gao,et al.  A survey of state and disturbance observers for practitioners , 2006, 2006 American Control Conference.

[187]  Rafael Martínez-Guerra,et al.  Robust state estimation for repetitive operating mode process: Application to sequencing batch reactors , 2007 .

[188]  Yasar Islamoglu,et al.  A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger––use of an artificial neural network model , 2003 .

[189]  Roberto Baratti,et al.  Monitoring of a CO oxidation reactor through a grey model-based EKF observer , 2000 .

[190]  Y. Candau,et al.  Bounded error moving horizon state estimator for non-linear continuous-time systems: application to a bioprocess system , 2005 .

[191]  Xuefeng Yan,et al.  A Fuzzy-based Adaptive Genetic Algorithm and Its Case Study in Chemical Engineering , 2011 .

[192]  Enrique Zuazua,et al.  Controllability and Observability of Partial Differential Equations: Some Results and Open Problems , 2007 .

[193]  Oscar Daniel Chuk,et al.  Froth collapse in column flotation : a prevention method using froth density estimation and fuzzy expert systems , 2005 .

[194]  Tae Woong Yoon,et al.  A composition estimator for multicomponent flash drum using recursive equation error method , 2000 .

[195]  Hassan Hammouri,et al.  In-line monitoring of the primary drying phase of the freeze-drying process in vial by means of a Kalman filter based observer , 2009 .

[196]  E. Evangelisti Controllability and Observability , 2011 .

[197]  Denis Dochain,et al.  Global observability and detectability analysis of uncertain reaction systems and observer design , 2008, Int. J. Control.

[198]  Rafael Martínez-Guerra,et al.  Reaction heat estimation in continuous chemical reactors using high gain observers , 2002 .

[199]  Luis A. Aguirre,et al.  A modified observer scheme for fault detection and isolation applied to a poorly observed process with integration , 1998 .

[200]  Tao Yu,et al.  On-line Estimation in Fed-batch Fermentation Process Using State Space Model and Unscented Kalman Filter , 2010 .

[201]  T. Floquet *,et al.  On the robust fault detection via a sliding mode disturbance observer , 2004 .

[202]  Stability, Controllability and Observability 4.1 Introduction 4.2 Stability , .

[203]  E. Alpay,et al.  Calorimetric estimation for a batch-loop emulsion polymerisation reactor , 2004 .

[204]  Jay H. Lee,et al.  Extended Kalman Filter Based Nonlinear Model Predictive Control , 1993, 1993 American Control Conference.

[205]  Leonid M. Fridman,et al.  High order sliding mode observer for linear systems with unbounded unknown inputs , 2010, Int. J. Control.

[206]  D. Luenberger Observers for multivariable systems , 1966 .

[207]  Jialin Liu,et al.  On-line soft sensor for polyethylene process with multiple production grades , 2007 .

[208]  Bjarne A. Foss,et al.  Observer Design for Multiphase Flow in Vertical Pipes with Gas Lift - Theory and Experiments , 2005 .

[209]  R Senthil,et al.  Design of observer based nonlinear model predictive controller for continuous stirred tank reactor , 2007 .