Topologically Protected States in One-Dimensional Systems

We study a class of periodic Schr\"odinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". We then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. Our model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states we construct can be realized as highly robust TM- electromagnetic modes for a class of photonic waveguides with a phase-defect.

[1]  P. Deift,et al.  On the existence of eigenvalues of the Schrödinger operatorH−λW in a gap of σ(H) , 1986 .

[2]  Charles L Fefferman,et al.  Topologically protected states in one-dimensional continuous systems and Dirac points , 2014, Proceedings of the National Academy of Sciences.

[3]  V. Duchêne,et al.  Scattering and Localization Properties of Highly Oscillatory Potentials , 2012, 1201.3904.

[4]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[5]  The $W^{k,p}$-continuity of wave operators for Schrödinger operators , 1995 .

[6]  William Shockley,et al.  On the Surface States Associated with a Periodic Potential , 1939 .

[7]  Jared C. Bronski,et al.  Counting Defect Modes in Periodic Eigenvalue Problems , 2011, SIAM J. Math. Anal..

[8]  J. Meixner,et al.  Mathieusche Funktionen und Sphäroidfunktionen , 1954 .

[9]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[10]  Y. Hatsugai,et al.  Chern number and edge states in the integer quantum Hall effect. , 1993, Physical review letters.

[11]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[12]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[13]  M. Porta,et al.  Bulk-Edge Correspondence for Two-Dimensional Topological Insulators , 2012, 1207.5989.

[14]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[15]  R. Weder The Wk, p-Continuity of the Schrödinger Wave Operators on the Line , 1999 .

[16]  Zheng Wang,et al.  One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. , 2008, Physical review letters.

[17]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[18]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[19]  V. Duchêne,et al.  Homogenized description of defect modes in periodic structures with localized defects , 2013, 1301.0837.

[20]  Lp-Boundedness of the Wave Operator for the One Dimensional Schrödinger Operator , 2005, math-ph/0509059.

[21]  Joseph B. Keller,et al.  Asymptotic behavior of stability regions for Hill's equation , 1987 .

[22]  Barry Simon,et al.  The bound state of weakly coupled Schrödinger operators in one and two dimensions , 1976 .

[23]  Michael I. Weinstein,et al.  Honeycomb Lattice Potentials and Dirac Points , 2012, 1202.3839.

[24]  A. Figotin,et al.  Localized classical waves created by defects , 1997 .

[25]  N. Levenberg,et al.  Function theory in several complex variables , 2001 .

[26]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[27]  Natalia Malkova,et al.  Observation of optical Shockley-like surface states in photonic superlattices. , 2009, Optics letters.

[28]  W. Magnus,et al.  Hill's equation , 1966 .

[29]  Wen,et al.  Gapless boundary excitations in the quantum Hall states and in the chiral spin states. , 1991, Physical review. B, Condensed matter.

[30]  C. Villegas-Blas,et al.  Topological Invariants of Edge States for Periodic Two-Dimensional Models , 2012, 1202.0537.

[31]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[32]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .

[33]  On the spectrum of a periodic operator with a small localized perturbation , 2006, math/0609195.

[34]  F. D. M. Haldane,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2008 .

[35]  F. S. Rofe-Beketov,et al.  Spectral Analysis of Differential Operators: Interplay Between Spectral and Oscillatory Properties , 2005 .

[36]  J. Moser An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum , 1981 .

[37]  Alexander Szameit,et al.  Photonic Floquet Topological Insulators , 2013, CLEO 2013.

[38]  V. Duchêne,et al.  Wave operator bounds for one-dimensional Schrödinger operators with singular potentials and applications , 2010, 1005.4943.