Tableaux for Finite-Valued Logics with Arbitrary Distribution Modalities

We generalize finite-valued modal logics by introducing the concept of distribution modalities in analogy to distribution quantifiers. Sound and complete proof search procedures are provided using prefixed signed tableaux. Examples indicate that our generalized concept of modalities is indeed needed to formalize different types of statements in contexts of "graded truth" and inconsistent or incomplete databases.

[1]  Reiner Hähnle,et al.  Towards an Efficient Tableau Proof Procedure for Multiple-Valued Logics , 1990, CSL.

[2]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[3]  N. Rescher Many Valued Logic , 1969 .

[4]  S. K. Thomason Possible worlds and many truth values , 1978 .

[5]  Pascal Ostermann,et al.  Many-valued modal logics: Uses and predicate calculus , 1990, Mathematical Logic Quarterly.

[6]  Christian G. Fermüller,et al.  MUltlog 1.0: Towards an Expert System for Many-Valued Logics , 1996, CADE.

[7]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[8]  Charles G. Morgan,et al.  Local and global operators and many-valued modal logics , 1979, Notre Dame J. Formal Log..

[9]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[10]  Walter Alexandre Carnielli,et al.  Systematization of finite many-valued logics through the method of tableaux , 1987, Journal of Symbolic Logic.

[11]  Peter K. Schotch,et al.  A note on three-valued modal logic , 1978, Notre Dame J. Formal Log..

[12]  Melvin Fitting,et al.  Tableaus for many-valued modal logic , 1995, Stud Logica.

[13]  Pascal Ostermann,et al.  Many-Valued Modal Propositional Calculi , 1988, Math. Log. Q..

[14]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[15]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[16]  Paolo Lipparini,et al.  Limit ultrapowers and abstract logics , 1987, Journal of Symbolic Logic.

[17]  Osamu Morikawa Some Modal Logics Based on a Three-Valued Logic , 1989, Notre Dame J. Formal Log..

[18]  Hans Jürgen Ohlbach,et al.  Computer Support for the Development and Investigation of Logics , 1996, Log. J. IGPL.

[19]  Reiner Hähnle,et al.  Automated deduction in multiple-valued logics , 1993, International series of monographs on computer science.

[20]  Christian G. Fermüller,et al.  Resolution-Based Theorem Proving for Manyvalued Logics , 1995, J. Symb. Comput..

[21]  Gernot Salzer,et al.  Optimal Axiomatizations for Multiple-Valued Operators and Quantifiers Based on Semi-lattices , 1996, CADE.

[22]  Christian G. Fermüller,et al.  Combining Many-valued and Intuitionistic Tableaux , 1996, TABLEAUX.

[23]  Reiner Hähnle Commodious Axiomatization of Quantifiers in Multiple-Valued Logic , 1996, ISMVL.

[24]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .