Leading order multi-soft behaviors of tree amplitudes in NLSM

[1]  D. Nandan,et al.  Multi-soft gluon limits and extended current algebras at null-infinity , 2016, 1610.03841.

[2]  R. Kallosh,et al.  Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory , 2016, 1609.09127.

[3]  Carlos R. Mafra,et al.  Abelian Z-theory: NLSM amplitudes and α′-corrections from the open string , 2016, 1608.02569.

[4]  H. Gomez Λ scattering equations , 2016, 1604.05373.

[5]  Sebastian Mizera,et al.  Extensions of theories from soft limits , 2016, 1604.03893.

[6]  Song He,et al.  Scattering equations, twistor-string formulas and double-soft limits in four dimensions , 2016, 1604.02834.

[7]  P. Vecchia,et al.  New soft theorems for the gravity dilaton and the Nambu-Goldstone dilaton at subsubleading order , 2015, 1512.03316.

[8]  I. Low Double soft theorems and shift symmetry in nonlinear sigma models , 2015, 1512.01232.

[9]  C. Cheung,et al.  On-Shell Recursion Relations for Effective Field Theories. , 2015, Physical review letters.

[10]  C. Wen,et al.  Recursion relations from soft theorems , 2015, 1512.06801.

[11]  Yu-tin Huang,et al.  Soft theorems from anomalous symmetries , 2015, 1509.07840.

[12]  R. Boels,et al.  Spontaneously broken conformal invariance in observables , 2015, 1507.08162.

[13]  Hui Luo,et al.  On single and double soft behaviors in NLSM , 2015, 1505.04411.

[14]  Arthur Lipstein,et al.  Soft theorems from conformal field theory , 2015, 1504.01364.

[15]  Song He,et al.  New double soft emission theorems , 2015, 1503.04816.

[16]  Wei-ming Chen,et al.  New Fermionic Soft Theorems for Supergravity Amplitudes. , 2014, Physical review letters.

[17]  Song He,et al.  Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM , 2014, 1412.3479.

[18]  Song He,et al.  Scattering of massless particles: scalars, gluons and gravitons , 2013, 1309.0885.

[19]  Song He,et al.  Scattering of massless particles in arbitrary dimensions. , 2013, Physical review letters.

[20]  Song He,et al.  Scattering equations and Kawai-Lewellen-Tye orthogonality , 2013, 1306.6575.

[21]  K. Kampf,et al.  Tree-level amplitudes in the nonlinear sigma model , 2013, 1304.3048.

[22]  K. Kampf,et al.  Recursion relations for tree-level amplitudes in the $SU(N)$ nonlinear sigma model , 2012, 1212.5224.

[23]  J. Kaplan,et al.  What is the simplest quantum field theory? , 2008, 0808.1446.

[24]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical review letters.

[25]  F. Cachazo,et al.  New recursion relations for tree amplitudes of gluons , 2004, hep-th/0412308.

[26]  R. Kleiss,et al.  Multigluon cross sections and 5-jet production at hadron colliders , 1989 .

[27]  L. Susskind,et al.  ALGEBRAIC ASPECTS OF PIONIC DUALITY DIAGRAMS. , 1970 .

[28]  Julius Wess,et al.  STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS. II. , 1969 .

[29]  Stephen L. Adler,et al.  Consistency Conditions on the Strong Interactions Implied by a Partially Conserved Axial-Vector Current , 1965 .