A Kohn-Sham method involving the direct determination of the Coulomb potential on a numerical grid

Abstract For large molecules, the dominant cost in Hartree-Fock and density functional theory calculations is the evaluation of the Coulomb contribution to the Fock (or Kohn-Sham) matrix. We examine two approaches for the direct evaluation of the electronic Coulomb potential, either through the numerical solution of Poisson's equation or through an analytical integration. It is found that the second approach is less costly. A knowledge of the Coulomb potential greatly facilitates the evaluation of energy gradients. It is suggested that the analytic evaluation of the Coulomb potential followed by the numerical calculation of the relevant matrix elements may be the most cost effective way to proceed.

[1]  Axel D. Becke,et al.  Numerical solution of Schrödinger’s equation in polyatomic molecules , 1990 .

[2]  Rigorous bounds to molecular electron repulsion and electrostatic potential integrals , 1989 .

[3]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[4]  K. Morokuma,et al.  Total energies of molecules with the local density functional approximation and gaussian basis sets , 1979 .

[5]  Erich Wimmer,et al.  Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies , 1992 .

[6]  E. A. Mccullough Seminumerical SCF calculations on small diatomic molecules , 1974 .

[7]  A. Becke Numerical Hartree-Fock-Slater Calculations on Diatomic-Molecules - Addendum , 1983 .

[8]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[9]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[10]  Benny G. Johnson,et al.  A standard grid for density functional calculations , 1993 .

[11]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[12]  Emilio San-Fabián,et al.  Automatic numerical integration techniques for polyatomic molecules , 1994 .

[13]  Evert Jan Baerends,et al.  Relativistic effects on bonding , 1981 .

[14]  A. Becke,et al.  Numerical solution of Poisson’s equation in polyatomic molecules , 1988 .

[15]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[16]  Andrew Komornicki,et al.  Molecular gradients and hessians implemented in density functional theory , 1993 .

[17]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[18]  Dunlap,et al.  Local-density-functional total energy gradients in the linear combination of Gaussian-type orbitals method. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[19]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[20]  Michael C. Zerner,et al.  The Challenge of d and f electrons : theory and computation , 1989 .

[21]  Richard A. Friesner,et al.  Solution of self-consistent field electronic structure equations by a pseudospectral method , 1985 .

[22]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[23]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[24]  D. Salahub,et al.  New algorithm for the optimization of geometries in local density functional theory , 1990 .

[25]  A. Becke Numerical Hartree-Fock-Slater Calculations on Diatomic Molecules , 1982 .

[26]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[27]  Nicholas C. Handy,et al.  A general purpose exchange-correlation energy functional , 1993 .

[28]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[29]  Nicholas C. Handy,et al.  Analytic Second Derivatives of the Potential Energy Surface , 1993 .

[30]  E. A. McCullough,et al.  The partial-wave self-consistent-field method for diatomic molecules: Computational formalism and results for small molecules , 1975 .