Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations

In this paper, a class of distributed-order time fractional diffusion equations (DOFDEs) on bounded domains is considered. By L1 method in temporal direction, a semi-discrete variational formulation of DOFDEs is obtained firstly. The stability and convergence of this semi-discrete scheme are discussed, and the corresponding fully discrete finite element scheme is investigated. To improve the convergence rate in time, the weighted and shifted Grünwald difference method is used. By this method, another finite element scheme for DOFDEs is obtained, and the corresponding stability and convergence are considered. And then, as a supplement, a higher order finite difference scheme of the Caputo fractional derivative is developed. By this scheme, an approach is suggested to improve the time convergence rate of our methods. Finally, some numerical examples are given for verification of our theoretical analysis.

[1]  Anita Alaria,et al.  Applications of Fractional Calculus , 2018 .

[2]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[3]  M. L. Morgado,et al.  Numerical approximation of distributed order reaction-diffusion equations , 2015, J. Comput. Appl. Math..

[4]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[5]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[6]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[7]  Jiye Yang,et al.  Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations , 2015, J. Comput. Phys..

[8]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[9]  Masahiro Yamamoto,et al.  Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations , 2014 .

[10]  R. Gorenflo,et al.  Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density , 2013 .

[11]  Jigen Peng,et al.  WELL-POSEDNESS OF ABSTRACT DISTRIBUTED-ORDER FRACTIONAL DIFFUSION EQUATIONS , 2013 .

[12]  X. Y. Li,et al.  A numerical method for solving distributed order diffusion equations , 2016, Appl. Math. Lett..

[13]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Fawang Liu,et al.  Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains , 2015, J. Comput. Phys..

[15]  Mohammad Moradi,et al.  Exact solutions to some models of distributed-order time fractional diffusion equations via the Fox H functions , 2013 .

[16]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[17]  Mark M. Meerschaert,et al.  Distributed-order fractional diffusions on bounded domains , 2009, 0912.2521.

[18]  Yingjun Jiang,et al.  Moving finite element methods for time fractional partial differential equations , 2013 .

[19]  Jerome A. Goldstein,et al.  Fractional telegraph equations , 2002 .

[20]  Bangti Jin,et al.  The Galerkin finite element method for a multi-term time-fractional diffusion equation , 2014, J. Comput. Phys..

[21]  Zhi-Zhong Sun,et al.  Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations , 2016, J. Sci. Comput..

[22]  Yong Zhang,et al.  Particle tracking for fractional diffusion with two time scales , 2010, Comput. Math. Appl..

[23]  Jiye Yang,et al.  Finite element multigrid method for multi-term time fractional advection diffusion equations , 2015, Int. J. Model. Simul. Sci. Comput..

[24]  Francesco Mainardi,et al.  Some aspects of fractional diffusion equations of single and distributed order , 2007, Appl. Math. Comput..

[25]  Fawang Liu,et al.  A numerical investigation of the time distributed-order diffusion model , 2014 .

[26]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[27]  Jincheng Ren,et al.  Efficient numerical approximation of the multi-term time fractional diffusion-wave equations , 2015 .

[28]  Fawang Liu,et al.  Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains , 2015 .

[29]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[30]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[31]  Zhi-Zhong Sun,et al.  Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations , 2015, Comput. Math. Appl..

[32]  Bangti Jin,et al.  Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data , 2015, 1504.01529.

[33]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. I. Volterra-type equation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[35]  Anatoly A. Alikhanov,et al.  Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation , 2013, Appl. Math. Comput..