A new approach for finding a basis for the splitting preconditioner for linear systems from interior point methods

The class of splitting preconditioners for the iterative solution of linear systems arising from Mehrotra’s predictor-corrector method for large scale linear programming problems needs to find a basis through a sophisticated process based on the application of a rectangular LU factorization. This class of splitting preconditioners works better near a solution of the linear programming problem when the matrices are highly ill-conditioned. In this study, we develop and implement a new approach to find a basis for the splitting preconditioner, based on standard rectangular LU factorization with partial permutation of the scaled transpose linear programming constraint matrix. In most cases, this basis is better conditioned than the existing one. In addition, we include a penalty parameter in Mehrotra’s predictor-corrector method in order to reduce ill-conditioning of the normal equations matrix. Computational experiments show a reduction in the average number of iterations of the preconditioned conjugate gradient method. Also, the increased efficiency and robustness of the new approach become evident by the performance profile.

[1]  Jacek Gondzio,et al.  Interior point methods 25 years later , 2012, Eur. J. Oper. Res..

[2]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[3]  Olaf Schenk,et al.  Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..

[4]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[5]  Jeffery L. Kennington,et al.  An Empirical Evaluation of the KORBX® Algorithms for Military Airlift Applications , 1990, Oper. Res..

[6]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[7]  Vera Kovacevic-Vujcic,et al.  Sparsity preserving preconditioners for linear systems in interior-point methods , 2015, Computational Optimization and Applications.

[8]  C. T. L. S. Ghidini,et al.  Computing a hybrid preconditioner approach to solve the linear systems arising from interior point methods for linear programming using the conjugate gradient method , 2014 .

[9]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[10]  C. T. L. S. Ghidini,et al.  Combining a hybrid preconditioner and a optimal adjustment algorithm to accelerate the convergence of interior point methods , 2012 .

[11]  Aurelio R. L. Oliveira,et al.  A note on hybrid preconditioners for large-scale normal equations arising from interior-point methods , 2010, Optim. Methods Softw..

[12]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[13]  Stephen J. Wright,et al.  PCx: an interior-point code for linear programming , 1999 .

[14]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[15]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[16]  D. Sorensen,et al.  A new class of preconditioners for large-scale linear systems from interior point methods for linear programming , 2005 .

[17]  Aurelio R. L. Oliveira,et al.  Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods , 2007, Comput. Optim. Appl..

[18]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[19]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[20]  Rudolf A. Römer,et al.  On large‐scale diagonalization techniques for the Anderson model of localization , 2005, SIAM J. Sci. Comput..

[21]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[22]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  IAIN S. DUFF,et al.  Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel Solution of Sparse Symmetric Indefinite Systems , 2007, SIAM J. Matrix Anal. Appl..

[25]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[26]  Kim-Chuan Toh,et al.  Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming , 2007, Comput. Optim. Appl..

[27]  Iain S. Duff,et al.  MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.

[28]  Olaf Schenk,et al.  Fast Methods for Computing Selected Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations , 2013, Euro-Par.