Computing with polynomials given by straight-line programs I: greatest common divisors
暂无分享,去创建一个
[1] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[2] Erich Kaltofen,et al. Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..
[3] David A. Plaisted. Sparse Complex Polynomials and Polynomial Reducibility , 1977, J. Comput. Syst. Sci..
[4] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[5] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[6] H. T. Kung. On computing reciprocals of power series , 1974 .
[7] Leslie G. Valiant,et al. Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..
[8] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[9] David Y. Y. Yun,et al. The EZ GCD algorithm , 1973, ACM Annual Conference.
[10] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[11] Robert T. Moenck,et al. Fast computation of GCDs , 1973, STOC.
[12] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[13] Joachim von zur Gathen,et al. Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..
[14] M. Rabin. Probabilistic algorithm for testing primality , 1980 .
[15] J. von zur Gathen. Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[16] W. S. Brown,et al. On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors , 1971, JACM.