Computing with polynomials given by straight-line programs I: greatest common divisors

We develop algorithms on multivariate polynomials represented by straight-line programs for the greatest common divisor problem and conversion to sparse representation. Our algorithms are in random polynomial-time for the usual coefficient fields and output with controllably high probability the correct result which for the GCD problem is a straight-line program determining the GCD of the inputs and for the conversion algorithm is the sparse representation of the input. The algorithms only require an a priori bound for the total degrees of the inputs. Over rational numbers the conversion algorithm also needs a bound on the size of the polynomial coefficients. As specializations we get, e.g., random polynomial-time algorithms for computing the sparse GCD of polynomial determinants or for computing the sparse solution of a linear system whose coefficients are given by formulas.

[1]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[2]  Erich Kaltofen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[3]  David A. Plaisted Sparse Complex Polynomials and Polynomial Reducibility , 1977, J. Comput. Syst. Sci..

[4]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[5]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[6]  H. T. Kung On computing reciprocals of power series , 1974 .

[7]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[8]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[9]  David Y. Y. Yun,et al.  The EZ GCD algorithm , 1973, ACM Annual Conference.

[10]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[11]  Robert T. Moenck,et al.  Fast computation of GCDs , 1973, STOC.

[12]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[13]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[14]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[15]  J. von zur Gathen Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[16]  W. S. Brown,et al.  On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors , 1971, JACM.