Optimality and identification of dynamic models in systems biology: an inverse optimal control framework

Motivation: Optimality principles have been used to explain many biological processes and systems. However, the functions being optimized are in general unknown a priori. Here we present an inverse optimal control framework for modeling dynamics in systems biology. The objective is to identify the underlying optimality principle from observed time‐series data and simultaneously estimate unmeasured time‐dependent inputs and time‐invariant model parameters. As a special case, we also consider the problem of optimal simultaneous estimation of inputs and parameters from noisy data. After presenting a general statement of the inverse optimal control problem, and discussing special cases of interest, we outline numerical strategies which are scalable and robust. Results: We discuss the existence, relevance and implications of identifiability issues in the above problems. We present a robust computational approach based on regularized cost functions and the use of suitable direct numerical methods based on the control‐vector parameterization approach. To avoid convergence to local solutions, we make use of hybrid global‐local methods. We illustrate the performance and capabilities of this approach with several challenging case studies, including simulated and real data. We pay particular attention to the computational scalability of our approach (with the objective of considering large numbers of inputs and states). We provide a software implementation of both the methods and the case studies. Availability and implementation: The code used to obtain the results reported here is available at https://zenodo.org/record/1009541. Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  Christoph Kaleta,et al.  Deciphering the regulation of metabolism with dynamic optimization: an overview of recent advances. , 2017, Biochemical Society transactions.

[2]  Jose A. Egea,et al.  Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method , 2009 .

[3]  D. Oyarzún Optimal control of metabolic networks with saturable enzyme kinetics , 2011 .

[4]  Eva Balsa-Canto,et al.  Global dynamic optimization approach to predict activation in metabolic pathways , 2014, BMC Systems Biology.

[5]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[6]  Julio R. Banga,et al.  Optimization in computational systems biology , 2008, BMC Systems Biology.

[7]  John K. Kruschke,et al.  Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .

[8]  Julio R. Banga,et al.  Robust and efficient parameter estimation in dynamic models of biological systems , 2015, BMC Systems Biology.

[9]  Daniel Liberzon,et al.  Calculus of Variations and Optimal Control Theory: A Concise Introduction , 2012 .

[10]  John E. R. Staddon,et al.  Optima for animals , 1982 .

[11]  J. M. Smith,et al.  Optimality theory in evolutionary biology , 1990, Nature.

[12]  F. J. Poelwijk,et al.  Optimality in evolution: new insights from synthetic biology. , 2013, Current opinion in biotechnology.

[13]  Dirk Lebiedz,et al.  Manipulation of self-aggregation patterns and waves in a reaction-diffusion system by optimal boundary control strategies. , 2003, Physical review letters.

[14]  W. Schaffer The Application of Optimal Control Theory to the General Life History Problem , 1983, The American Naturalist.

[15]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[16]  Stefan Schuster,et al.  Modelling the optimal timing in metabolic pathway activation - Use of Pontryagin's Maximum Principle and role of the Golden section , 2010, Biosyst..

[17]  U. Alon,et al.  Just-in-time transcription program in metabolic pathways , 2004, Nature Genetics.

[18]  H. Westerhoff,et al.  Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering , 2016, Journal of The Royal Society Interface.

[19]  R. Rosen Optimality Principles in Biology , 1967, Springer US.

[20]  Reinhard Guthke,et al.  Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs , 2011, Molecular Systems Biology.

[21]  Edda Klipp,et al.  Prediction of temporal gene expression. Metabolic opimization by re-distribution of enzyme activities. , 2002, European journal of biochemistry.

[22]  Maik Kschischo,et al.  Learning (from) the errors of a systems biology model , 2016, Scientific Reports.

[23]  Katja D. Mombaur,et al.  Inverse optimal control based identification of optimality criteria in whole-body human walking on level ground , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[24]  Neil D. Evans,et al.  Input Estimation for Extended-Release Formulations Exemplified with Exenatide , 2017, Front. Bioeng. Biotechnol..

[25]  N. Rashevsky Mathematical principles in biology and their applications , 1961 .

[26]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[27]  Eva Balsa-Canto,et al.  Bioinformatics Applications Note Systems Biology Genssi: a Software Toolbox for Structural Identifiability Analysis of Biological Models , 2022 .

[28]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[29]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[30]  A. Popescu Bionics, Biological Systems and the Principle of Optimal Design , 1998, Acta biotheoretica.

[31]  William J. Sutherland,et al.  The best solution , 2005, Nature.

[32]  Jean-Luc Gouzé,et al.  Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies , 2016, PLoS Comput. Biol..

[33]  Jörg Stelling,et al.  Systems interface biology , 2006, Journal of The Royal Society Interface.

[34]  Maik Kschischo,et al.  Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling , 2012, PLoS Comput. Biol..

[35]  D. Oyarzún,et al.  Dynamic optimization of metabolic networks coupled with gene expression. , 2013, Journal of theoretical biology.

[36]  Eva Balsa-Canto,et al.  AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology , 2016, Bioinform..

[37]  Douglas B. Kell,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE ACM Trans. Comput. Biol. Bioinform..

[38]  N A W van Riel,et al.  Parameter uncertainty in biochemical models described by ordinary differential equations. , 2013, Mathematical biosciences.

[39]  R. Heinrich,et al.  Mathematical analysis of enzymic reaction systems using optimization principles. , 1991, European journal of biochemistry.

[40]  J. Timmer,et al.  Testing the Pattern of AKT Activation by Variational Parameter Estimation , 2016, IEEE Life Sciences Letters.

[41]  Katja Mombaur,et al.  Optimal Control for Applications in Medical and Rehabilitation Technology: Challenges and Solutions , 2016 .

[42]  Stefan Schuster,et al.  Dynamic optimization identifies optimal programmes for pathway regulation in prokaryotes , 2013, Nature Communications.

[43]  R Bellman,et al.  DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Magnus Trägårdh,et al.  Input estimation for drug discovery using optimal control and Markov chain Monte Carlo approaches , 2016, Journal of Pharmacokinetics and Pharmacodynamics.

[45]  Julio R. Banga,et al.  Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy , 2017, BMC Bioinformatics.

[46]  Holger Fröhlich,et al.  A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models , 2017, Journal of The Royal Society Interface.

[47]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .

[48]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[49]  Eva Balsa-Canto,et al.  Dynamic optimization of bioprocesses: efficient and robust numerical strategies. , 2005, Journal of biotechnology.

[50]  Pu Li,et al.  Optimal programs of pathway control: dissecting the influence of pathway topology and feedback inhibition on pathway regulation , 2015, BMC Bioinformatics.

[51]  Ilse Smets,et al.  Optimal adaptive control of (bio)chemical reactors: past, present and future , 2004 .

[52]  J. Kruschke Bayesian estimation supersedes the t test. , 2013, Journal of experimental psychology. General.

[53]  Nacim Ramdani,et al.  Towards solving inverse optimal control in a bounded-error framework , 2015, 2015 American Control Conference (ACC).

[54]  Johannes P. Schlöder,et al.  Estimating Parameters in Optimal Control Problems , 2012, SIAM J. Sci. Comput..

[55]  V. Hatzimanikatis Analysis and design of metabolic reaction networks , 1997 .

[56]  Oliver Mason,et al.  The rôle of control and system theory in systems biology , 2008, Annu. Rev. Control..

[57]  William Bialek,et al.  Perspectives on theory at the interface of physics and biology , 2015, Reports on progress in physics. Physical Society.

[58]  B. Ingalls,et al.  Sequential Activation of Metabolic Pathways: a Dynamic Optimization Approach , 2009, Bulletin of mathematical biology.

[59]  U. Alon,et al.  Optimality and evolutionary tuning of the expression level of a protein , 2005, Nature.

[60]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[61]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[62]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[63]  Filip Logist,et al.  Dynamic optimization of biological networks under parametric uncertainty , 2016, BMC Systems Biology.

[64]  David Angeli,et al.  Shaping pulses to control bistable systems: Analysis, computation and counterexamples , 2016, Autom..

[65]  D. J. Mcfarland Decision making in animals , 1977, Nature.

[66]  Moritz Lang,et al.  Modular Parameter Identification of Biomolecular Networks , 2016, SIAM J. Sci. Comput..

[67]  R Heinrich,et al.  Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints. , 1997, European journal of biochemistry.

[68]  J. M. Smith,et al.  Optimization Theory in Evolution , 1978 .

[69]  Jens Timmer,et al.  Comprehensive estimation of input signals and dynamics in biochemical reaction networks , 2012, Bioinform..

[70]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..