Adaptive–impulsive synchronization and parameters estimation of chaotic systems with unknown parameters by using discontinuous drive signals

Abstract In this paper, adaptive–impulsive synchronization and parameters estimation of chaotic systems only by using discontinuous drive signals are investigated. In the scheme proposed both the impulsive synchronization controller and the adaptive parameters update law are modeled only by using discontinuous output of the chaotic system. The corresponding theoretical proof is given to guarantee the effectiveness of the proposed strategy. This is meaningful in applications when continuous signals cannot be obtained. Moreover, concrete schemes are designed for quantum cellular neural network (Quantum-CNN) and well known Chen chaotic system. Results show that synchronization and the parameters estimation can be achieved under some conditions. The numerical simulations are presented to demonstrate the effectiveness of the proposed scheme.

[1]  Chaohua Dai,et al.  Seeker optimization algorithm for parameter estimation of time-delay chaotic systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Zhaoyan Wu,et al.  Adaptive impulsive synchronization of uncertain drive-response complex-variable chaotic systems , 2014 .

[3]  Yinggan Tang,et al.  Parameter estimation for time-delay chaotic system by particle swarm optimization , 2009 .

[4]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[5]  Juan Luo,et al.  Erratum to: Parameter identification and synchronization of uncertain general complex networks via adaptive-impulsive control , 2013, Nonlinear Dynamics.

[6]  Z. Ge,et al.  The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems , 2008 .

[7]  Hamid Khaloozadeh,et al.  Designing a Novel Adaptive Impulsive Observer for Nonlinear Continuous Systems Using LMIs , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  G. Ambika,et al.  Synchronizing time delay systems using variable delay in coupling , 2011 .

[10]  K. Sudheer,et al.  Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system , 2011 .

[11]  Henry D I Abarbanel,et al.  Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Jitao Sun,et al.  Adaptive-impulsive synchronization of chaotic systems , 2011, Math. Comput. Simul..

[13]  Hongtao Lu,et al.  Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters , 2011 .

[14]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  C. P. Vyasarayani,et al.  Single-shooting homotopy method for parameter identification in dynamical systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Hongmin Li,et al.  Adaptive impulsive synchronization of a class of chaotic and hyperchaotic systems , 2012 .

[17]  Amit Banerjee,et al.  A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems , 2014 .

[18]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[19]  Yixian Yang,et al.  Conditions of parameter identification from time series. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Han Xiao,et al.  Parameters identification of chaotic system by chaotic gravitational search algorithm , 2012, Chaos, Solitons & Fractals.

[21]  Cheng-Hsiung Yang,et al.  Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control , 2010 .

[22]  Hamed Mojallali,et al.  Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems , 2012 .

[23]  K. Sudheer,et al.  Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters , 2009 .

[24]  Liping Li,et al.  Estimating parameters by anticipating chaotic synchronization. , 2010, Chaos.

[25]  P. Karimaghaee,et al.  Adaptive controller design for lag-synchronization of two non-identical time-delayed chaotic systems with unknown parameters , 2011 .