Transformation model estimation of image registration via least square support vector machines

This paper describes a new approach to the determination of a mapping function from given coordinates of control points based on least square support vector machines (LS-SVM). An interesting property of this approach is that it constitutes a practical implementation of the structural risk minimization (SRM) principle that aims at minimizing a bound on the generalization error of a model, rather than minimizing the mean square error over control points. Computer simulation results indicate that this new approach can remove geometric deformation and adapt to correct the errors induced by inaccuracy location of control points.

[1]  V. Vapnik The Support Vector Method of Function Estimation , 1998 .

[2]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[3]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[4]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[5]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[6]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[7]  A. Ardeshir Goshtasby,et al.  Piecewise cubic mapping functions for image registration , 1987, Pattern Recognit..

[8]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[9]  Johan A. K. Suykens,et al.  Nonlinear modeling : advanced black-box techniques , 1998 .

[10]  A. Ardeshir Goshtasby,et al.  Registration of images with geometric distortions , 1988 .

[11]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[12]  Jan Flusser,et al.  An adaptive method for image registration , 1992, Pattern Recognit..

[13]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[14]  Johan A. K. Suykens,et al.  Weighted least squares support vector machines: robustness and sparse approximation , 2002, Neurocomputing.

[15]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[16]  Johan Suykens Least Squares Support Vector Machines : an Overview , 2002 .

[17]  Daniel S. Hirschberg,et al.  Small Sample Statistics for Classification Error Rates I: Error Rate Measurements , 1996 .

[18]  Ardeshir Goshtasby,et al.  A Region-Based Approach to Digital Image Registration with Subpixel Accuracy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Peter Van Wie,et al.  Purdue e-Pubs , 2013 .

[20]  M. L. Nack Rectification and Registration of Digital Images and the Effect of Cloud Detection , 1977 .

[21]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[22]  S. Sathiya Keerthi,et al.  Evaluation of simple performance measures for tuning SVM hyperparameters , 2003, Neurocomputing.

[23]  Nira Dyn,et al.  Image Warping by Radial Basis Functions: Application to Facial Expressions , 1994, CVGIP Graph. Model. Image Process..

[24]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[25]  A. Ardeshir Goshtasby,et al.  Piecewise linear mapping functions for image registration , 1986, Pattern Recognit..

[26]  K. Rohr,et al.  Thin-plate spline approximation for image registration , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.