Existence results for fractional order semilinear functional differential equations with nondense domain

Abstract In this paper, we establish sufficient conditions for existence and uniqueness of solutions for some nondensely defined semilinear functional differential equations involving the Riemann–Liouville derivative. Our approach is based on integrated semigroup theory, the Banach contraction principle, and the nonlinear alternative of Leray–Schauder type.

[1]  Bashir Ahmad,et al.  Existence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions , 2009 .

[2]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[3]  Alberto Cabada,et al.  An Existence Result for Nonlinear Fractional Differential Equations on Banach Spaces , 2009 .

[4]  Mahmoud M. El-Borai,et al.  ON SOME FRACTIONAL EVOLUTION EQUATIONS WITH NONLOCAL CONDITIONS , 2005 .

[5]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[6]  Bashir Ahmad,et al.  Existence of Solutions for Fractional Differential Inclusions with Antiperiodic Boundary Conditions , 2009 .

[7]  Richard L. Magin,et al.  Solving the fractional order Bloch equation , 2009 .

[8]  T F Nonnenmacher,et al.  A fractional calculus approach to self-similar protein dynamics. , 1995, Biophysical journal.

[9]  Ravi P. Agarwal,et al.  A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative , 2009 .

[10]  J. Nieto,et al.  Existence of Periodic Solution for a Nonlinear Fractional Differential Equation , 2009 .

[11]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[12]  Mahmoud M. El-Borai,et al.  The fundamental solutions for fractional evolution equations of parabolic type , 2004 .

[13]  William A. Wakeham,et al.  A fractional differential equation for a MEMS viscometer used in the oil industry , 2009 .

[14]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[15]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[16]  S. Momani,et al.  Existence of the mild solution for fractional semilinear initial value problems , 2008 .

[17]  G. Prato,et al.  Differential operators with non dense domain , 1987 .

[18]  Dumitru Baleanu,et al.  About fractional quantization and fractional variational principles , 2009 .

[19]  Bashir Ahmad,et al.  Existence of Solutions for Nonlocal Boundary Value Problems of Higher-Order Nonlinear Fractional Differential Equations , 2009 .

[20]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[21]  I. Podlubny Fractional differential equations , 1998 .

[22]  V. Lakshmikantham,et al.  Nagumo-type uniqueness result for fractional differential equations , 2009 .

[23]  Kai Diethelm,et al.  Numerical solution of fractional order differential equations by extrapolation , 1997, Numerical Algorithms.

[24]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[25]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[26]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[27]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[28]  Juan J. Nieto,et al.  Some new existence results for fractional differential inclusions with boundary conditions , 2009, Math. Comput. Model..

[29]  V. Lakshmikantham,et al.  Nonsmooth analysis and fractional differential equations , 2009 .

[30]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[31]  Yong-sheng Ding,et al.  A generalized Gronwall inequality and its application to a fractional differential equation , 2007 .

[32]  W. Arendt Vector-valued laplace transforms and cauchy problems , 2002 .

[33]  Wolfgang Mackens,et al.  Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties , 2011 .