Expanding the horizontal capabilities of CRT monitors using artificial inter-pixel steps for neuroscience experiments

This article describes the development of a visual stimulus generator to be used in neuroscience experiments with invertebrates such as flies. The experiment consists in the visualization of a fixed image that is displaced horizontally according to the stimulus data. The system is capable of displaying 640x480 pixels with 256 intensity levels at 200 frames per second (FPS) on conventional raster monitors. To double the possible horizontal positioning possibilities from 640 to 1280, a novel technique is presented introducing artificial inter-pixel steps. The implementation consists in using two video frame buffers containing each a distinct view of the desired image pattern. This implementation generates a visual effect capable of doubling the horizontal positioning capabilities of the visual stimulus generator allowing more precise and movements more contiguous.

[1]  Lírio Onofre Baptista de Almeida,et al.  Recording from Two Neurons: Second-Order Stimulus Reconstruction from Spike Trains and Population Coding , 2010, Neural Computation.

[2]  Kevin Moses Evolutionary biology: Fly eyes get the whole picture , 2006, Nature.

[3]  A. Weeks,et al.  Image Performance in CRT Displays , 2003 .

[4]  Leonard Salomon Ornstein On the Brownian Motion , .

[5]  Margaret Young,et al.  Visual evoked potentials with CRT and LCD monitors , 2009, Neurology.

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  A. Borst,et al.  Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.

[8]  Jonathan Westley Peirce,et al.  Neuroinformatics Original Research Article Generating Stimuli for Neuroscience Using Psychopy , 2022 .

[9]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[10]  E Peli,et al.  Luminance artifacts of cathode-ray tube displays for vision research. , 2001, Spatial vision.

[11]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  K Hausen Monokulare und binokulare Bewegungsauswertung in der Lobula plate der Fliege , 1981 .

[13]  C. Zuker,et al.  Transforming the architecture of compound eyes , 2006, Nature.

[14]  Peter Neri,et al.  Spatial integration of optic flow signals in fly motion-sensitive neurons. , 2006, Journal of neurophysiology.

[15]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[16]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[17]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[18]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[19]  S. Laughlin,et al.  Temperature and the temporal resolving power of fly photoreceptors , 2000, Journal of Comparative Physiology A.

[20]  S. Sherr Electronic displays , 1979 .

[21]  J. V. van Hateren,et al.  Function and Coding in the Blowfly H1 Neuron during Naturalistic Optic Flow , 2005, The Journal of Neuroscience.

[22]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[23]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[24]  M Egelhaaf,et al.  On the performance of biological movement detectors and ideal velocity sensors in the context of optomotor course stabilization. , 1998, Visual neuroscience.

[25]  Örjan Ekeberg,et al.  Large-Scale Modeling – a Tool for Conquering the Complexity of the Brain , 2008, Frontiers Neuroinformatics.