Non-commutative measure of quantum correlations under local operations

We study some desirable properties of recently introduced measures of quantum correlations based on the amount of non-commutativity quantified by the Hilbert–Schmidt norm (Guo in Sci Rep 6:25241, 2016; Majtey et al. in Quantum Inf Process 16:226, 2017). Specifically, we show that: (1) for any bipartite ($$A+B$$A+B) state, the measures of quantum correlations with respect to subsystem A are non-increasing under any local commutative preserving operation on subsystem A, and (2) for Bell-diagonal states, the measures are non-increasing under arbitrary local operations on B. Our results accentuate the potentialities of such measures and exhibit them as valid monotones in a resource theory of quantum correlations with free operations restricted to the appropriate local channels.

[1]  Ming-Liang Hu,et al.  Dynamics of entropic measurement-induced nonlocality in structured reservoirs , 2012, 1201.6430.

[2]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[3]  Li-Xiang Cen,et al.  Quantifying quantum discord and entanglement of formation via unified purifications , 2010, 1006.4727.

[4]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[5]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[6]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[7]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[8]  Sixia Yu,et al.  Quantum discord of two-qubit X states , 2011, 1102.0181.

[9]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[10]  D. Spehner,et al.  Geometric quantum discord with Bures distance: the qubit case , 2013, 1308.5005.

[11]  G. Adesso,et al.  Quantum discord for general two-qubit states: Analytical progress , 2011, 1103.3189.

[12]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[13]  Yichen Huang,et al.  Quantum discord for two-qubit X states: Analytical formula with very small worst-case error , 2013, 1306.0228.

[14]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[15]  Jiangfeng Du,et al.  Quantum discord of two-qubit rank-2 states , 2011, 1107.2246.

[16]  H. Fan,et al.  Necessary and sufficient conditions for local creation of quantum correlation , 2011, 1112.3141.

[17]  Meyer Sophisticated quantum search without entanglement , 2000, Physical review letters.

[18]  D. Spehner,et al.  Geometric quantum discord with Bures distance , 2013, 1304.3334.

[19]  I. A. Silva,et al.  There is more to quantum interferometry than entanglement , 2016, 1610.07504.

[20]  Lorenza Viola,et al.  NMR quantum information processing and entanglement , 2002, Quantum Inf. Comput..

[21]  L. Jakóbczyk Spontaneous emission and quantum discord: Comparison of Hilbert-Schmidt and trace distance discord , 2014, 1408.0647.

[22]  Yichen Huang,et al.  Computing quantum discord is NP-complete , 2013, 1305.5941.

[23]  Matthias D. Lang,et al.  Quantum discord and the geometry of Bell-diagonal states. , 2010, Physical review letters.

[24]  S. Luo Quantum discord for two-qubit systems , 2008 .

[25]  Aharon Brodutch,et al.  Quantum discord, local operations, and Maxwell's demons , 2010 .

[26]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[27]  Hermann Kampermann,et al.  Behavior of quantum correlations under local noise. , 2011, Physical review letters.

[28]  Yu Guo Non-commutativity measure of quantum discord , 2014, Scientific Reports.

[29]  F. M. Paula,et al.  Geometric quantum discord through the Schatten 1-norm , 2013, 1302.7034.

[30]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[31]  Animesh Datta,et al.  Role of entanglement and correlations in mixed-state quantum computation , 2007 .

[32]  Xiao-Ming Lu,et al.  Optimal measurements to access classical correlations of two-qubit states , 2010, 1009.1476.

[33]  J. Hou,et al.  Necessary and sufficient conditions for the local creation of quantum discord , 2012, 1206.2159.

[34]  Hamid Reza Mohammadi,et al.  Quantifying nonclassicality of correlations based on the concept of nondisruptive local state identification , 2016, Quantum Inf. Process..

[35]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[36]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[37]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[38]  Aharon Brodutch,et al.  Criteria for measures of quantum correlations , 2012, Quantum Inf. Comput..

[39]  S. Fei,et al.  Quantum Discord and Geometry for a Class of Two-qubit States , 2011, 1104.1843.

[40]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[41]  Ming-Liang Hu,et al.  Measurement-induced nonlocality based on the trace norm , 2014, 1402.4321.

[42]  D. G. Bussandri,et al.  Problem of quantifying quantum correlations with non-commutative discord , 2017, Quantum Inf. Process..