Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study.

We present a simulation study where different resolutions, namely coarse-grained (CG) and all-atom (AA) molecular dynamics simulations, are used sequentially to combine the long timescale reachable by CG simulations with the high resolution of AA simulations, to describe the complete processes of peptide aggregation and pore formation by alamethicin peptides in a hydrated lipid bilayer. In the 1-micros CG simulations the peptides spontaneously aggregate in the lipid bilayer and exhibit occasional transitions between the membrane-spanning and the surface-bound configurations. One of the CG systems at t = 1 micros is reverted to an AA representation and subjected to AA simulation for 50 ns, during which water molecules penetrate the lipid bilayer through interactions with the peptide aggregates, and the membrane starts leaking water. During the AA simulation significant deviations from the alpha-helical structure of the peptides are observed, however, the size and arrangement of the clusters are not affected within the studied time frame. Solid-state NMR experiments designed to match closely the setup used in the molecular dynamics simulations provide strong support for our finding that alamethicin peptides adopt a diverse set of configurations in a lipid bilayer, which is in sharp contrast to the prevailing view of alamethicin oligomers formed by perfectly aligned helical alamethicin peptides in a lipid bilayer.

[1]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[2]  Klaus Schulten,et al.  Application of Residue-Based and Shape-Based Coarse-Graining to Biomolecular Simulations , 2008 .

[3]  R. Yantorno,et al.  Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers. , 1982, Biophysical journal.

[4]  Michael L Klein,et al.  Probing Membrane Insertion Activity of Antimicrobial Polymers via Coarse-grain Molecular Dynamics. , 2006, Journal of chemical theory and computation.

[5]  Qiang Shi,et al.  Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. , 2006, The journal of physical chemistry. B.

[6]  N. Nielsen,et al.  Membrane-bound conformation of peptaibols with methyl-deuterated alpha-amino isobutyric acids by 2H magic angle spinning solid-state NMR spectroscopy. , 2007, Journal of the American Chemical Society.

[7]  Peter J Bond,et al.  Insertion and assembly of membrane proteins via simulation. , 2006, Journal of the American Chemical Society.

[8]  Y. Nagaoka,et al.  Ion channels of alamethicin dimer N-terminally linked by disulfide bond. , 2003, Biophysical journal.

[9]  Gregory A Voth,et al.  Coarse-grained peptide modeling using a systematic multiscale approach. , 2007, Biophysical journal.

[10]  M. Hohwy,et al.  Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. , 2001, Biophysical journal.

[11]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[12]  F. Reusser,et al.  A polypeptide antibacterial agent isolated fromTrichoderma viride , 1967, Experientia.

[13]  A. Malmendal,et al.  The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy , 2002 .

[14]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[15]  G. Molle,et al.  Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. , 1992, Biophysical journal.

[16]  Klaus Schulten,et al.  Multiscale Method for Simulating Protein-DNA Complexes , 2004, Multiscale Model. Simul..

[17]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[18]  Gregory A Voth,et al.  Multiscale coarse graining of liquid-state systems. , 2005, The Journal of chemical physics.

[19]  M S Sansom,et al.  Proline‐induced hinges in transmembrane helices: Possible roles in ion channel gating , 2001, Proteins.

[20]  M. Bloom,et al.  Mattress model of lipid-protein interactions in membranes. , 1984, Biophysical journal.

[21]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[22]  Klaus Schulten,et al.  Disassembly of nanodiscs with cholate. , 2007, Nano letters.

[23]  Berk Hess,et al.  Analysis and evaluation of channel models: simulations of alamethicin. , 2002, Biophysical journal.

[24]  Frederic M. Richards,et al.  A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution , 1982, Nature.

[25]  M S Sansom,et al.  Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. , 1999, Biophysical journal.

[26]  M. Schick,et al.  Molecular theory of hydrophobic mismatch between lipids and peptides , 2001, cond-mat/0108237.

[27]  J. Killian,et al.  Hydrophobic mismatch between proteins and lipids in membranes. , 1998, Biochimica et biophysica acta.

[28]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[29]  M S Sansom,et al.  An alamethicin channel in a lipid bilayer: molecular dynamics simulations. , 1999, Biophysical journal.

[30]  C. Aisenbrey,et al.  The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy. , 2004, Biochimica et biophysica acta.

[31]  Themis Lazaridis,et al.  Voltage-dependent energetics of alamethicin monomers in the membrane. , 2006, Biophysical chemistry.

[32]  H. Duclohier Helical kink and channel behaviour: a comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin , 2004, European Biophysics Journal.

[33]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[34]  A F Smeijers,et al.  Coarse-grained transmembrane proteins: hydrophobic matching, aggregation, and their effect on fusion. , 2006, The journal of physical chemistry. B.

[35]  D. Tieleman,et al.  Molecular dynamics simulations of antimicrobial peptides: From membrane binding to trans‐membrane channels , 2001 .

[36]  K. Schulten,et al.  Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Salgado,et al.  Self-assembling of peptide/membrane complexes by atomistic molecular dynamics simulations. , 2007, Biophysical journal.

[38]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[39]  Walter L Ash,et al.  Direct simulation of transmembrane helix association: role of asparagines. , 2004, Biophysical journal.

[40]  Marilisa Neri,et al.  Coarse-grained model of proteins incorporating atomistic detail of the active site. , 2005, Physical review letters.

[41]  B. Bechinger,et al.  15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. , 2001, Biochemistry.

[42]  Peter A. J. Hilbers,et al.  Structure of a water/oil interface in the presence of micelles: A computer simulation study , 1991 .

[43]  Berend Smit,et al.  Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. , 2005, Biophysical journal.

[44]  J. Breed,et al.  Engineering stabilized ion channels: covalent dimers of alamethicin. , 1996, Biochemistry.

[45]  Carlos F. Lopez,et al.  Transmembrane peptide-induced lipid sorting and mechanism of Lalpha-to-inverted phase transition using coarse-grain molecular dynamics. , 2004, Biophysical journal.

[46]  G. Marshall,et al.  C-terminally shortened alamethicin on templates: influence of the linkers on conductances. , 1999, Biochimica et biophysica acta.

[47]  Siewert J Marrink,et al.  Antimicrobial peptides in action. , 2006, Journal of the American Chemical Society.

[48]  Klaus Schulten,et al.  Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.

[49]  Huey W. Huang,et al.  Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. , 2002, Biophysical journal.

[50]  S. Ludtke,et al.  Mechanism of alamethicin insertion into lipid bilayers. , 1996, Biophysical journal.

[51]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[52]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[53]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[54]  Yili Wu,et al.  Lipid-alamethicin interactions influence alamethicin orientation. , 1991, Biophysical journal.

[55]  S. Jayasinghe,et al.  Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. , 1994, Biochemistry.

[56]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[57]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[58]  H. Berendsen,et al.  Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations. , 1999, Biophysical journal.

[59]  Thomas Huber,et al.  G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. , 2007, Journal of the American Chemical Society.

[60]  H. Duclohier,et al.  Voltage-Dependent Pore Formation and Antimicrobial Activity by Alamethicin and Analogues , 2001, The Journal of Membrane Biology.

[61]  D. Cafiso Alamethicin: a peptide model for voltage gating and protein-membrane interactions. , 1994, Annual review of biophysics and biomolecular structure.

[62]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[63]  M S Sansom,et al.  Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces. , 2001, Biophysical journal.

[64]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[65]  Proline-induced kink in a helix arises primarily from dihedral angle energy: a molecular dynamics simulation on alamethicin , 1999 .