The Role of Critical Exponents in Blow-Up Theorems: The Sequel

Abstract In [ 27 ] Fujita showed that for positive solutions, the initial value problem (in R N ) for u t  = Δ u  +  u p with p  > 1 exhibited the following behavior: If p p c  ≡ 1 + 2/ N , then the initial value problem does not have any nontrivial, non-negative solution existing on R N  × [0, ∞) (a global solution), whereas if p  >  p c , there exist global, small data, positive solutions as well as solutions which are non-global. We call such a result a blow-up theorem of Fujita type. In [ 50 ], Levine discussed the various theorems of this type that had appeared in the literature prior to 1990. In this paper we revisit the literature since 1990.

[1]  Howard A. Levine,et al.  A general approach to critical Fujita exponents in nonlinear parabolic problems , 1998 .

[2]  On critical exponents for the heat equation with a nonlinear boundary condition , 1996 .

[3]  Y. Qi On the equation ut = ∆uα + uβ , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  J. Vázquez,et al.  A diffusion-convection equation in several space dimensions , 1992 .

[5]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[6]  Howard A. Levine,et al.  Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations , 1995 .

[7]  Toshihiko Hamada On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data , 1997 .

[8]  Weighted Strichartz estimates and global existence for semilinear wave equations , 1997, math/9912206.

[9]  Howard A. Levine,et al.  A Fujita type global existence-global nonexistence theorem for a weakly coupled system of reaction-diffusion equations , 1991 .

[10]  F. Weissler Existence and non-existence of global solutions for a semilinear heat equation , 1981 .

[11]  Ryuichi Suzuki,et al.  Critical exponent and critical blow-up for quasilinear parabolic equations , 1997 .

[12]  Qi S. Zhang,et al.  The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  H. Takamura,et al.  Critical Curve for p-q Systems of Nonlinear Wave Equations in Three Space Dimensions , 2000 .

[14]  Otared Kavian,et al.  Remarks on the large time behaviour of a nonlinear diffusion equation , 1987 .

[15]  K. Deng,et al.  Global Existence for Nonlinear Diffusion Equations , 1995 .

[16]  Qi S. Zhang BLOW-UP RESULTS FOR NONLINEAR PARABOLIC EQUATIONS ON MANIFOLDS , 1999 .

[17]  Masahito Ohta,et al.  Critical Blowup for Systems of Semilinear Wave Equations in Low Space Dimensions , 1999 .

[18]  Hiroshi Matano,et al.  Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations , 1989 .

[19]  F. Weissler,et al.  Self-Similar Subsolutions and Blowup for Nonlinear Parabolic Equations , 1997 .

[20]  Qi S. Zhang Blow Up and Global Existence of Solutions to an Inhomogeneous Parabolic System , 1998 .

[21]  Peter Meier,et al.  On the critical exponent for reaction-diffusion equations , 1990 .

[22]  G. Lu,et al.  Subsolutions and super solutions to systems of parabolic equations with applications to generalized Fujita-type systems , 1994 .

[23]  Miroslav Chlebík,et al.  From critical exponents to blow-up rates for parabolic problems , 2000 .

[24]  Howard A. Levine,et al.  A blowup result for the critical exponent in cones , 1989 .

[25]  H. Levine A global existence-global nonexistence conjecture of Fujita type for a system of degenerate semilinear parabolic equations , 1996 .

[26]  Daniele Andreucci,et al.  A fujita type result for a degenerate Neumann problem in domains with noncompact boundary , 1999 .

[27]  Hermann Brunner,et al.  Blowup in diffusion equations: a survey , 1998 .

[28]  Howard A. Levine,et al.  The value of the critical exponent for reaction-diffusion equations in cones , 1990 .

[29]  K. Deng Nonexistence of global solutions of a nonlinear hyperbolic system , 1997 .

[30]  B. Sleeman,et al.  Maximum principles and comparison theorems for semilinear parabolic systems and their applications , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  Howard A. Levine,et al.  The critical exponent of degenerate parabolic systems , 1993 .

[32]  Hiroshi Tanaka,et al.  On the growing up problem for semilinear heat equations , 1977 .

[33]  Hiroshi Matano,et al.  Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation , 1982 .

[34]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[35]  J. Vázquez,et al.  Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations , 1995 .

[36]  Bei Hu,et al.  Critical Exponents for a System of Heat Equations Coupled in a Non-linear Boundary Condition , 1996 .

[37]  Victor A. Galaktionov,et al.  Continuation of blowup solutions of nonlinear heat equations in several space dimensions , 1997 .

[38]  M. Escobedo,et al.  On the blow-up of solutions of a convective reaction diffusion equation , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[39]  Miguel Escobedo,et al.  Large time behavior for convection-diffusion equations in RN , 1991 .

[40]  Qi S. Zhang A New Critical Phenomenon for Semilinear Parabolic Problems , 1998 .

[41]  K. Mochizuki,et al.  Existence and nonexistence of global solutions to fast diffusions with source , 1995 .

[42]  Keng Deng,et al.  ON CRITICAL EXPONENTS FOR A SYSTEM OF HEAT EQUATIONS COUPLED IN THE BOUNDARY CONDITIONS , 1994 .

[43]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[44]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[45]  Existence and nonexistence of global solutions to quasilinear parabolic equations with convection , 1998 .

[46]  Kantaro Hayakawa,et al.  On Nonexistence of Global Solutions of Some Semilinear Parabolic Differential Equations , 1973 .

[47]  Marek Fila,et al.  A FUJITA-TYPE THEOREM FOR THE LAPLACE EQUATION WITH A DYNAMICAL BOUNDARY CONDITION , 1997 .

[48]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[49]  N. Mizoguchi,et al.  Critical Exponents for the Blowup of Solutions with Sign Changes in a Semilinear Parabolic Equation, II , 1998 .

[50]  N. Mizoguchi,et al.  Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation , 1997 .

[51]  Toshihiko Hamada Non existence of global solutions of parabolic equation in conical domains , 1995 .

[52]  Geometrical implications of the existence of very smooth bump functions in Banach spaces , 1989 .

[53]  Catherine Bandle,et al.  On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains , 1989 .

[54]  Victor A. Galaktionov,et al.  Blow-up for quasilinear heat equations with critical Fujita's exponents , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[55]  Philippe Souplet,et al.  Uniform Blow-Up Profiles and Boundary Behavior for Diffusion Equations with Nonlocal Nonlinear Source , 1999 .

[56]  Y. Qi The critical exponents of parabolic equations and blow-up in Rn , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[57]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[58]  On Critical Exponents for the Heat Equation with a Mixed Nonlinear Dirichlet–Neumann Boundary Condition , 1997 .

[59]  Miroslav Chlebík,et al.  On the blow-up rate for the heat equation with a nonlinear boundary condition , 2000 .

[60]  Kiyoshi Mochizuki,et al.  A Note on the Global Solutions of a Degenerate Parabolic System , 1997 .

[61]  M. Fila,et al.  A Fujita‐type global existence—global non‐existence theorem for a system of reaction diffusion equations with differing diffusivities , 1994 .

[62]  V. A. Galaktionov,et al.  The conditions for there to be no global solutions of a class of quasilinear parabolic equations , 1982 .

[63]  K. Deng Blow-Up of Solutions of Some Nonlinear Hyperbolic Systems , 1999 .

[64]  Francisco Bernis,et al.  A very singular solution for the dual porous medium equation and the asymptotic behaviour of general solutions. , 1993 .

[65]  R. Pinsky Existence and Nonexistence of Global Solutions forut=Δu+a(x) upinRd , 1997 .

[66]  Yoshitaka Uda The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations , 1995 .

[67]  Miguel Escobedo,et al.  Asymptotic behaviour and source-type solutions for a diffusion-convection equation , 1993 .

[68]  Peter Meier,et al.  Blow-up of solutions of semilinear parabolic differential equations , 1988 .

[69]  Man Kam Kwong,et al.  The influence of nonlocal nonlinearities on the long time behavior of solutions of Burgers' equation , 1992 .

[70]  Miguel A. Herrero,et al.  Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .

[71]  Sigurd B. Angenent,et al.  The Morse-Smale property for a semi-linear parabolic equation , 1986 .

[72]  Bei Hu,et al.  Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition , 1996, Differential and Integral Equations.

[73]  Qing Huang,et al.  Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations , 1998 .

[74]  Howard A. Levine,et al.  On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary , 1996 .

[75]  V. Georgiev,et al.  Global existence of the solutions and formation of singularities for a class of hyperbolic systems , 1997 .

[76]  K. Hayakawa,et al.  On nonexistence of global solutions of some semilinear parabolic equations , 1973 .

[77]  J. Craggs Applied Mathematical Sciences , 1973 .

[78]  Howard A. Levine,et al.  Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+ℱ(u) , 1973 .

[79]  Finite time blow-up for the inhomogeneous equation _{}=Δ+()^{}+ in ^{} , 1999 .

[80]  Joanna Rencławowicz,et al.  Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations , 1998 .

[81]  Ryuichi Suzuki Critical Blow-Up for Quasilinear Parabolic Equations in Exterior Domains , 1996 .

[82]  Howard A. Levine,et al.  On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition , 1996 .