Signal transduction and signal transmission

Vision begins in highly specialized light-sensing neurons, the rod and cone photoreceptors. Their task is to absorb photons, transduce the physical stimulus into neuronal signals, transmit the signals to the parallel signal processing pathways of the subsequent retinal network with the highest possible fidelity and continuously adapt to changes in stimulus intensities. If you imagine a pitch-black night with only a few photons hitting the retina and being absorbed by the photoreceptors and a bright sunny day with the photoreceptors being bombarded by billions of photons, you realize that a photoreceptor faces two fundamental challenges: it has to detect the light signal with the greatest sensitivity, e.g. a single photon leads to a change in the membrane potential of a rod photoreceptor and, at the same time, encode light intensities covering a broad dynamic range of several orders of magnitude. To fulfill these demands, photoreceptors have developed separate, structurally and functionally specialized compartments, which are the topic of this article: the outer segment for signal transduction and the terminal with its highly complex ribbon synapse for signal transmission.ZusammenfassungSehen beginnt in hoch spezialisierten sensorischen Nervenzellen, den Stäbchen- und Zapfen-Photorezeptoren. Ihre Aufgabe ist die Aufnahme und Umwandlung von Lichtteilchen in elektrische Signale, welche sie in höchster Präzision auf das nachfolgende Netzwerk der Retina übertragen. Photorezeptoren haben die Fähigkeit, sich in ihrer Aktivität ständig den vorherrschenden Lichtverhältnissen anzupassen. Man stelle sich eine stockdunkle Nacht vor, in der es nur vereinzelte Lichtteilchen gibt, die auf die Retina treffen und von den Photorezeptoren aufgenommen werden, und im Vergleich dazu einen strahlend hellen Sonnentag mit Milliarden von Lichtteilchen, die auf die Photorezeptoren einwirken. Auf diese Weise wird einem bewusst, dass die Photorezeptoren zwei grundlegende Herausforderungen zu bewältigen haben: Sie müssen äußerst empfindlich sein – schon ein einzelnes Lichtteilchen reicht aus, um eine Aktivitätsveränderung in einem Stäbchen-Photorezeptor auszulösen – und gleichzeitig müssen sie eine ungeheure dynamische Bandbreite an Lichtintensitäten wahrnehmen, die mehrere Zehnerpotenzen umfasst. Um diese Anforderungen erfüllen zu können, haben die Photorezeptoren abgegrenzte, strukturell und funktionell spezialisierte Kompartimente entwickelt, die in diesem Beitrag näher beschrieben werden sollen: das Photorezeptor-Außensegment, das die Aufgabe der Signalwandlung innehat, und die Endigungen der Photorezeptoren mit ihren hochkomplexen Bandsynapsen, welche die Aufgabe der Signalübertragung übernehmen.

[1]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[2]  T. H. Nguyen,et al.  Diurnal variation in synaptic ribbon length and visual threshold , 2001, Visual Neuroscience.

[3]  R. Heidelberger Adenosine Triphosphate and the Late Steps in Calcium-dependent Exocytosis at a Ribbon Synapse , 1998, The Journal of general physiology.

[4]  K. Yau,et al.  Phototransduction Motifs and Variations , 2009, Cell.

[5]  A. Swaroop,et al.  Subunit Dissociation and Diffusion Determine the Subcellular Localization of Rod and Cone Transducins , 2007, The Journal of Neuroscience.

[6]  J. Rosenbaum,et al.  Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. , 2008, Current topics in developmental biology.

[7]  U. Wolfrum,et al.  Light-dependent translocation of arrestin in rod photoreceptors is signaled through a phospholipase C cascade and requires ATP. , 2010, Cellular signalling.

[8]  G. Matthews,et al.  Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons , 1996, Neuron.

[9]  Marie E. Burns,et al.  Beyond Counting Photons: Trials and Trends in Vertebrate Visual Transduction , 2005, Neuron.

[10]  E. N. Pugh,et al.  Molecular mechanisms of vertebrate photoreceptor light adaptation , 1999, Current Opinion in Neurobiology.

[11]  B. Krock,et al.  Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. , 2009, Investigative ophthalmology & visual science.

[12]  T. Südhof,et al.  Essential functions of synapsins I and II in synaptic vesicle regulation , 1995, Nature.

[13]  U. Wolfrum,et al.  Immunoelectron microscopy of vesicle transport to the primary cilium of photoreceptor cells. , 2009, Methods in cell biology.

[14]  Peter Sterling,et al.  Evidence That Vesicles Undergo Compound Fusion on the Synaptic Ribbon , 2008, The Journal of Neuroscience.

[15]  U. Wolfrum,et al.  Differential Expression and Interaction with the Visual G-protein Transducin of Centrin Isoforms in Mammalian Photoreceptor Cells* , 2004, Journal of Biological Chemistry.

[16]  E. Pugh,et al.  Massive Light-Driven Translocation of Transducin between the Two Major Compartments of Rod Cells A Novel Mechanism of Light Adaptation , 2002, Neuron.

[17]  G. Pazour,et al.  Targeting proteins to the ciliary membrane. , 2008, Current topics in developmental biology.

[18]  Josef Ammermüller,et al.  The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina , 2003, Neuron.

[19]  J. Brandstätter,et al.  Ribbon synapses of the retina , 2006, Cell and Tissue Research.

[20]  Edward N Pugh,et al.  G proteins and phototransduction. , 2002, Annual review of physiology.

[21]  B. Schnapp,et al.  The Kinesin Motor KIF3A Is a Component of the Presynaptic Ribbon in Vertebrate Photoreceptors , 1999, The Journal of Neuroscience.

[22]  P. Sterling,et al.  Synaptic Ribbon Conveyor Belt or Safety Belt? , 2003, Neuron.

[23]  W. Hauswirth,et al.  Mechanistic Basis for the Failure of Cone Transducin to Translocate: Why Cones Are Never Blinded by Light , 2010, The Journal of Neuroscience.

[24]  J. Brandstätter,et al.  Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: The involvement of precursor spheres , 2009, The Journal of comparative neurology.

[25]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[26]  K. Yau,et al.  Phototransduction in mouse rods and cones , 2007, Pflügers Archiv - European Journal of Physiology.

[27]  J. Besharse,et al.  The Photoreceptor Connecting Cilium A Model for the Transition Zone , 1990 .

[28]  Peter Sterling,et al.  Structure and function of ribbon synapses , 2005, Trends in Neurosciences.

[29]  J. Rosenbaum,et al.  Chapter Two Intraflagellar Transport (IFT) , 2008 .

[30]  E. Pugh,et al.  Light-driven translocation of signaling proteins in vertebrate photoreceptors. , 2006, Trends in cell biology.

[31]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[32]  U. Wolfrum,et al.  Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium , 2006, Vision Research.

[33]  Nils Brose,et al.  Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming , 2001, Neuron.

[34]  M. E. Burns Deactivation mechanisms of rod phototransduction: the Cogan lecture. , 2010, Investigative ophthalmology & visual science.

[35]  F. Schmitz,et al.  Multiple RIBEYE–RIBEYE Interactions Create a Dynamic Scaffold for the Formation of Synaptic Ribbons , 2008, The Journal of Neuroscience.

[36]  Peter Sterling,et al.  Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. , 2002, Journal of neurophysiology.

[37]  M. Adly,et al.  Ultrastructural changes of photoreceptor synaptic ribbons in relation to time of day and illumination. , 1999, Investigative ophthalmology & visual science.

[38]  Thomas C. Südhof,et al.  RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone , 2002, Nature.

[39]  E. Gundelfinger,et al.  Molecular dissection of the photoreceptor ribbon synapse , 2005, The Journal of cell biology.

[40]  G. Augustine,et al.  Synaptic structure and function: Dynamic organization yields architectural precision , 1995, Cell.

[41]  Frank Schmitz,et al.  The Making of Synaptic Ribbons: How They Are Built and What They Do , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[42]  T. Wensel Signal transducing membrane complexes of photoreceptor outer segments , 2008, Vision Research.

[43]  G. Matthews,et al.  Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. , 2002, Journal of neurophysiology.

[44]  P. Schnetkamp The SLC24 Na+/Ca2+-K+ exchanger family: vision and beyond , 2004, Pflügers Archiv.

[45]  T. Südhof,et al.  RIBEYE, a Component of Synaptic Ribbons A Protein's Journey through Evolution Provides Insight into Synaptic Ribbon Function , 2000, Neuron.

[46]  Eckart D. Gundelfinger,et al.  Molecular organization of the presynaptic active zone , 2006, Cell and Tissue Research.

[47]  N. Artemyev Light-Dependent Compartmentalization of Transducin in Rod Photoreceptors , 2008, Molecular Neurobiology.

[48]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[49]  Wallace B. Thoreson,et al.  Synaptic transmission at retinal ribbon synapses , 2005, Progress in Retinal and Eye Research.

[50]  I. Lasarzik,et al.  Mouse photoreceptor synaptic ribbons lose and regain material in response to illumination changes , 2004, The European journal of neuroscience.

[51]  Christian Rosenmund,et al.  Structurally and functionally unique complexins at retinal ribbon synapses , 2005, The Journal of cell biology.

[52]  K. Yau,et al.  How vision begins: An odyssey , 2008, Proceedings of the National Academy of Sciences.

[53]  H. Wässle,et al.  A SNARE Complex Containing Syntaxin 3 Is Present in Ribbon Synapses of the Retina , 1996, The Journal of Neuroscience.

[54]  J. Malicki,et al.  What drives cell morphogenesis: A look inside the vertebrate photoreceptor , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[55]  J. Hurley,et al.  Mechanism of light‐induced translocation of arrestin and transducin in photoreceptors: Interaction‐restricted diffusion , 2007, IUBMB life.

[56]  H. Chin,et al.  Pharmacogenetics of Complement Factor H (Y402H), ARMS2(Loc387715) and Htra1 ; Treatment Response of Exudative Age-Related Macular Degeneration With Bevacizumab in Korean Population , 2010 .

[57]  R. Roepman,et al.  Protein networks and complexes in photoreceptor cilia. , 2007, Sub-cellular biochemistry.

[58]  K. Anderson,et al.  The primary cilium: a signalling centre during vertebrate development , 2010, Nature Reviews Genetics.