We demonstrate periodic localization of neutral atoms of better than 65 nm behind amplitude, i.e., absorptive masks made of light. With these masks, produced by a standing on resonant light wave, it is possible to create and to probe spatially well-defined atomic distributions. Applications of such absorptive masks range from atom lithography to fundamental atom optical experiments. As two examples we show how to use these gratings as a tool to measure the evolution of an atomic wave field behind a static Bragg crystal and its dependence on the incidence angle of the atomic beam and how to demonstrate the frequency shift of atoms diffracted at a modulated Bragg crystal in a beating experiment.