Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins.

[1]  A. Slawin,et al.  N1-Benzyl substituted cambinol analogues as isozyme selective inhibitors of the sirtuin family of protein deacetylases , 2011 .

[2]  M. D. Lloyd,et al.  Cloning, purification, crystallization and preliminary crystallographic analysis of the human histone deacetylase sirtuin 1. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[3]  J. Ellis,et al.  SIRT1 modulation as a novel approach to the treatment of diseases of aging. , 2011, Journal of medicinal chemistry.

[4]  J. Denu,et al.  Catalysis and Mechanistic Insights into Sirtuin Activation , 2011, Chembiochem : a European journal of chemical biology.

[5]  W. Sippl,et al.  NAD+‐dependent histone deacetylases (sirtuins) as novel therapeutic targets , 2010, Medicinal research reviews.

[6]  M. Pallàs,et al.  Sirtuin activators: designing molecules to extend life span. , 2010, Biochimica et biophysica acta.

[7]  Y. Cen,et al.  Sirtuins inhibitors: the approach to affinity and selectivity. , 2010, Biochimica et biophysica acta.

[8]  Jianyuan Luo,et al.  SIRT1 and p53, effect on cancer, senescence and beyond. , 2010, Biochimica et biophysica acta.

[9]  Christian Neri,et al.  SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis , 2010, Proceedings of the National Academy of Sciences.

[10]  B. Knöll,et al.  SIRT2-mediated protein deacetylation: An emerging key regulator in brain physiology and pathology. , 2010, European journal of cell biology.

[11]  N. Westwood,et al.  The discovery of nongenotoxic activators of p53: building on a cell-based high-throughput screen. , 2010, Seminars in cancer biology.

[12]  D. Sinclair,et al.  Mammalian sirtuins: biological insights and disease relevance. , 2010, Annual review of pathology.

[13]  Yingkai Zhang,et al.  Side chain specificity of ADP‐ribosylation by a sirtuin , 2009, The FEBS journal.

[14]  C. Wolberger,et al.  Structure-based Mechanism of ADP-ribosylation by Sirtuins , 2009, The Journal of Biological Chemistry.

[15]  Hongzhe Li,et al.  NAD‐Dependent Deacetylases as Therapeutic Targets , 2009 .

[16]  A. Slawin,et al.  Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. , 2009, Journal of medicinal chemistry.

[17]  Wei Gu,et al.  p53 Activation: a case against Sir. , 2008, Cancer cell.

[18]  Lee Baker,et al.  Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule p53 Activator , 2007, Cancer cell.

[19]  Brian C. Smith,et al.  Linking SIRT2 to Parkinson's disease. , 2007, ACS chemical biology.

[20]  Ruben Abagyan,et al.  Sirtuin 2 Inhibitors Rescue α-Synuclein-Mediated Toxicity in Models of Parkinson's Disease , 2007, Science.

[21]  J. Boeke,et al.  The biochemistry of sirtuins. , 2006, Annual review of biochemistry.

[22]  R. DePinho,et al.  Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. , 2006, Cancer research.

[23]  D. Sinclair,et al.  Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. , 2005, Journal of medicinal chemistry.

[24]  T. Klabunde,et al.  Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. , 2005, Journal of medicinal chemistry.

[25]  Brian C. Smith,et al.  Small molecule regulation of Sir2 protein deacetylases , 2005, The FEBS journal.

[26]  K. K. Hii,et al.  Multigram synthesis of well-defined extended bifunctional polyethylene glycol (PEG) chains. , 2004, The Journal of organic chemistry.

[27]  Phuong Chung,et al.  Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan , 2003, Nature.

[28]  J. Denu,et al.  The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. , 2003, Molecular cell.

[29]  S. Minucci,et al.  Human SIR2 deacetylates p53 and antagonizes PML/p53‐induced cellular senescence , 2002, The EMBO journal.

[30]  Delin Chen,et al.  Negative Control of p53 by Sir2α Promotes Cell Survival under Stress , 2001, Cell.

[31]  R. Weinberg,et al.  hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase , 2001, Cell.

[32]  C. Wei,et al.  Mutagenicity and toxicity studies of p-phenylenediamine and its derivatives. , 1995, Toxicology letters.

[33]  P. Klotz,et al.  Synthesis of a tri‐tritiated heterobifunctional reagent, a potential tool in photoaffinity labeling technology , 1991 .

[34]  T. Nagano,et al.  Facile desulfurization of thiocarbonyl groups to carbonyls by superoxide. A model of metabolic reactions. , 1981, Chemical & pharmaceutical bulletin.

[35]  S. Laín,et al.  Sirtuins and p53. , 2009, Advances in cancer research.

[36]  A. Sauve,et al.  Pharmaceutical strategies for activating sirtuins. , 2009, Current pharmaceutical design.

[37]  Stuart L Schreiber,et al.  Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. , 2002, Chemistry & biology.