Artificial Intelligence-Based Optimization of a Bimorph-Segmented Tapered Piezoelectric MEMS Energy Harvester for Multimode Operation
暂无分享,去创建一个
This paper presents a study on the design and multiobjective optimization of a bimorph-segmented linearly tapered piezoelectric harvester for low-frequency and multimode vibration energy harvesting. The procedure starts with a significant number of FEM simulations of the structure with different geometric dimensions—length, width, and tapering ratio. The datasets train the artificial neural network (ANN) that provides the fitting function to be modified and used in algorithms for optimization, aiming to achieve minimal resonant frequency and maximal generated power. Levenberg–Marquardt (LM) and scaled conjugate gradient (SCG) methods were used to train the ANN, then the goal attainment method (GAM) and genetic algorithm (GA) were used for optimization. The dominant solution resulted from optimization by the genetic algorithm integrated with the ANN fitting function obtained by the SCG training method. The optimal piezoelectric harvester is 121.3 mm long and 71.56 mm wide and has a taper ratio of 0.7682. It ensures over five times greater output power at frequencies below 200 Hz, which benefits the low frequency of the vibration spectrum. The optimized design can harness the power of higher-resonance modes for multimode applications.