Toward Extractive Summarization of Multimodal Documents

Summarization research has focused on text, and relatively little attention has been given to the summarization of multimodal documents. If extractive summarization techniques are to be used on multimodal documents containing information graphics (bar charts, line graphs, etc.), then a strategy must be devised both for extracting the high-level content of the information graphics and for identifying where that content is relevant in the article’s text. This paper gives an overview of our prior work on constructing a summary of an information graphic and presents our new research on methods for selecting paragraphs in a multimodal document that are most relevant to a constituent information graphic. The results demonstrate that our methods are far superior to possible baseline methods and that our work advances the use of extractive techniques for summarizing multimodal documents.

[1]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[2]  W. Bruce Croft,et al.  Passage retrieval based on language models , 2002, CIKM '02.

[3]  Berna Erol,et al.  Multimodal summarization of meeting recordings , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[4]  Dominic Widdows,et al.  Orthogonal Negation in Vector Spaces for Modelling Word-Meanings and Document Retrieval , 2003, ACL.

[5]  Khurshid Ahmad,et al.  Summarization of Multimodal Information , 2004, LREC.

[6]  Tat-Seng Chua,et al.  Question answering passage retrieval using dependency relations , 2005, SIGIR '05.

[7]  Hong Yu,et al.  Accessing bioscience images from abstract sentences , 2006, ISMB.

[8]  Stephanie Elzer Schwartz,et al.  Information graphics: an untapped resource for digital libraries , 2006, SIGIR.

[9]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval , 2008, NAACL.

[10]  Xiaoyan Li,et al.  Enhancing Relevance Models with Adaptive Passage Retrieval , 2008, ECIR.

[11]  Peng Wu,et al.  Recognizing the Intended Message of Line Graphs , 2010, Diagrams.

[12]  Kathleen F. McCoy,et al.  Interactive SIGHT: textual access to simple bar charts , 2010, New Rev. Hypermedia Multim..

[13]  Peng Wu,et al.  Segmenting Line Graphs Into Trends , 2010, IC-AI.

[14]  Ingrid Zukerman,et al.  The automated understanding of simple bar charts , 2011, Artif. Intell..

[15]  Mark Levene,et al.  Search Engines: Information Retrieval in Practice , 2011, Comput. J..