Some global bifurcations related to the appearance of closed invariant curves

In this paper, we consider a two-dimensional map (a duopoly game) in which the fixed point is destabilized via a subcritical Neimark-Hopf (N-H) bifurcation. Our aim is to investigate, via numerical examples, some global bifurcations associated with the appearance of repelling closed invariant curves involved in the Neimark-Hopf bifurcations. We shall see that the mechanism is not unique, and that it may be related to homoclinic connections of a saddle cycle, that is to a closed invariant curve formed by the merging of a branch of the stable set of the saddle with a branch of the unstable set of the same saddle. This will be shown by analyzing the bifurcations arising inside a periodicity tongue, i.e., a region of the parameter space in which an attracting cycle exists.

[1]  Tönu Puu,et al.  Chaos in duopoly pricing , 1991 .

[2]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[3]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[4]  Augustin M. Cournot Cournot, Antoine Augustin: Recherches sur les principes mathématiques de la théorie des richesses , 2019, Die 100 wichtigsten Werke der Ökonomie.

[5]  Laura Gardini,et al.  Global bifurcations in duopoly when the Cournot Point is Destabilized via a Subcritical Neimark bifurcation , 2006, IGTR.

[6]  David A. Rand,et al.  Exotic phenomena in games and duopoly models , 1978 .

[7]  J. Barkley Rosser,et al.  From Catastrophe to Chaos: A General Theory of Economic Discontinuities , 1991 .

[8]  Tönu Puu,et al.  A Cournot duopoly with bounded inverse demand function , 2002 .

[9]  Gian Italo Bischi,et al.  Equilibrium selection in a nonlinear duopoly game with adaptive expectations , 2001 .

[10]  Anna Norin,et al.  Cournot duopoly when the competitors operate under capacity constraints , 2003 .

[11]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[12]  Michael Kopel,et al.  Long Run Evolution , Path Dependence and Global Properties of Dynamic Games : A Tutorial , 2003 .

[13]  Laura Gardini,et al.  Global bifurcations of Closed Invariant Curves in Two-Dimensional Maps: a Computer Assisted Study , 2005, Int. J. Bifurc. Chaos.

[14]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[15]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[16]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[17]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[18]  L. E. Fouraker,et al.  The Theory of Monopolistic Competition , 1933 .

[19]  Christoph Kind,et al.  Remarks on the economic interpretation of Hopf bifurcations , 1999 .

[20]  Tönu Puu,et al.  Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics , 2000 .

[21]  Laura Gardini,et al.  The dynamics of a triopoly Cournot game , 2000 .

[22]  E. Chamberlin The Theory of Monopolistic Competition , 1933 .

[23]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  E. Chamberlin The Theory of Monopolistic Competition , 1933 .