Cylindrical Li-Ion Battery State of Health Evaluation by Differential Heat Analysis During Calendar Ageing

[1]  Ellen Ivers-Tiffée,et al.  Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging , 2014 .

[2]  Matteo Galeotti,et al.  Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy , 2015 .

[3]  I. Villarreal,et al.  Critical review of state of health estimation methods of Li-ion batteries for real applications , 2016 .

[4]  P. Regtien,et al.  Modeling Battery Behavior for Accurate State-of-Charge Indication , 2006 .

[5]  Kevin L. Gering,et al.  Differential voltage analyses of high-power lithium-ion cells: 3. Another anode phenomenon , 2005 .

[6]  N. A. Sokolov,et al.  The calibration of gradient heat flux sensors , 2012 .

[7]  Joeri Van Mierlo,et al.  Online state of health estimation on NMC cells based on predictive analytics , 2016 .

[8]  Vojtech Svoboda,et al.  Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge , 2007 .

[9]  Juha Pyrhonen,et al.  Determination of the entropy change profile of a cylindrical lithium-ion battery by heat flux measurements , 2016 .

[10]  Ellen Ivers-Tiffée,et al.  Electrochemical characterization and post-mortem analysis of aged LiMn2O4–NMC/graphite lithium ion batteries part II: Calendar aging , 2014 .

[11]  Nigel P. Brandon,et al.  Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries , 2016 .

[12]  Matthieu Dubarry,et al.  Identify capacity fading mechanism in a commercial LiFePO4 cell , 2009 .

[13]  Juha Pyrhonen,et al.  Gradient heat flux sensors for high temperature environments , 2012 .

[14]  Jay Lee,et al.  Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility , 2014 .

[15]  Phl Peter Notten,et al.  Degradation mechanisms of C6/LiFePO4 batteries : experimental analyses of calendar aging , 2016 .

[16]  Vojtech Svoboda,et al.  Capacity and power fading mechanism identification from a commercial cell evaluation , 2007 .

[17]  M. Dubarry,et al.  Overcharge Study in Li4Ti5O12 Based Lithium-Ion Pouch Cell I. Quantitative Diagnosis of Degradation Modes , 2015 .

[18]  Joeri Van Mierlo,et al.  A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter , 2018 .

[19]  C. Delacourt,et al.  Calendar aging of a graphite/LiFePO4 cell , 2012 .

[20]  Matthieu Dubarry,et al.  Synthesize battery degradation modes via a diagnostic and prognostic model , 2012 .

[21]  Phl Peter Notten,et al.  Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Cycling-induced Aging , 2016 .

[22]  Daniel P. Abraham,et al.  Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC , 2010 .

[23]  M. Dubarry,et al.  Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries , 2006 .

[24]  Jianqiu Li,et al.  Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 + LiyMn2O4 composite cathode , 2015 .

[25]  Kevin L. Gering,et al.  Differential voltage analyses of high-power lithium-ion cells: 2. Applications , 2005 .

[26]  Nigel P. Brandon,et al.  Differential thermal voltammetry for tracking of degradation in lithium-ion batteries , 2014 .

[27]  M. Dubarry,et al.  Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs , 2014 .

[28]  Maitane Berecibar,et al.  State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application , 2016 .

[29]  Peter H. L. Notten,et al.  Adaptive thermal modeling of Li-ion batteries , 2013 .

[30]  M. Dubarry,et al.  Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging , 2016 .

[31]  Taedong Goh,et al.  Capacity estimation algorithm with a second-order differential voltage curve for Li-ion batteries with NMC cathodes , 2017 .

[32]  Matthieu Dubarry,et al.  Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2 C cycle aging , 2011 .

[33]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[34]  I. Bloom,et al.  Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application , 2005 .

[35]  Rachid Yazami,et al.  A study of lithium ion batteries cycle aging by thermodynamics techniques , 2014 .

[36]  A. Jossen,et al.  Fast and Accurate Measurement of Entropy Profiles of Commercial Lithium-Ion Cells , 2015 .

[37]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[38]  Dl Dmitry Danilov,et al.  Modeling All-Solid-State Li-Ion Batteries , 2011 .

[39]  Yo Kobayashi,et al.  Degradation mechanism analysis of all-solid-state lithium polymer secondary batteries by using the impedance measurement , 2005 .