Recent advances and applications of WRF–SFIRE

Abstract. Coupled atmosphere–fire models can now generate forecasts in real time, owing to recent advances in computational capabilities. WRF–SFIRE consists of the Weather Research and Forecasting (WRF) model coupled with the fire-spread model SFIRE. This paper presents new developments, which were introduced as a response to the needs of the community interested in operational testing of WRF–SFIRE. These developments include a fuel-moisture model and a fuel-moisture-data-assimilation system based on the Remote Automated Weather Stations (RAWS) observations, allowing for fire simulations across landscapes and time scales of varying fuel-moisture conditions. The paper also describes the implementation of a coupling with the atmospheric chemistry and aerosol schemes in WRF–Chem, which allows for a simulation of smoke dispersion and effects of fires on air quality. There is also a data-assimilation method, which provides the capability of starting the fire simulations from an observed fire perimeter, instead of an ignition point. Finally, an example of operational deployment in Israel, utilizing some of the new visualization and data-management tools, is presented.

[1]  Minjeong Kim,et al.  Data assimilation for wildland fires , 2007, IEEE Control Systems.

[2]  R. M. Nelson,et al.  Prediction of diurnal change in 10-h fuel stick moisture content , 2000 .

[3]  Jean Baptiste Filippi,et al.  A physical model for wildland fires , 2009 .

[4]  J. Mandel,et al.  Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment , 2013 .

[5]  A. Sullivan Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models , 2009 .

[6]  J. Mandel,et al.  Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011 , 2011, 1102.1343.

[7]  Paul Rosen,et al.  Data management and analysis with WRF and SFIRE , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[8]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[9]  A. Sullivan,et al.  Thermal decomposition and combustion chemistry of cellulosic biomass , 2012 .

[10]  Janice L. Coen,et al.  Simulation of the Big Elk Fire using coupled atmosphere–fire modeling , 2005 .

[11]  Fredrik Lundh,et al.  GeoTIFF format specification GeoTIFF revision 1.0 , 2000 .

[13]  H. Anderson Aids to Determining Fuel Models for Estimating Fire Behavior , 1982 .

[14]  John Michalakes,et al.  WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model , 2013 .

[15]  Jonathan D. Beezley,et al.  ENSEMBLE KALMAN FILTERS IN COUPLED ATMOSPHERE-SURFACE MODELS , 2009 .

[16]  J. Mandel,et al.  Ignition from a Fire Perimeter in a WRF Wildland Fire Model , 2011, 1107.2675.

[17]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[18]  G. Mills,et al.  The Kangaroo Island bushfires of 2007 A meteorological case study and WRF-fire simulation , 2011 .

[19]  F. E. Fendell,et al.  Wind-Aided Fire Spread , 2001 .

[20]  T. Clark,et al.  Description of a coupled atmosphere–fire model , 2004 .

[21]  Jonathan D. Beezley,et al.  Toward an integrated system for fire, smoke and air quality simulations , 2014, 1405.4058.

[22]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[23]  F. Albini,et al.  A model for the wind-blown flame from a line fire , 1981 .

[24]  Jonathan D. Beezley,et al.  Simulation of the 2009 Harmanli Fire (Bulgaria) , 2011, LSSC.

[25]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[26]  Jean-Baptiste Filippi,et al.  Simulation of Coupled Fire/Atmosphere Interaction with the MesoNH-ForeFire Models , 2010 .

[27]  Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem , 2013, 1304.7703.

[28]  Georg A. Grell,et al.  Fully coupled “online” chemistry within the WRF model , 2005 .

[29]  R. Burgan,et al.  Fuel Models and Fire Potential From Satellite and Surface Observations , 1998 .

[30]  Yohay Carmel,et al.  Assessing fire risk using Monte Carlo simulations of fire spread , 2009 .

[31]  David J. Murray-Smith,et al.  Real-Time Simulation , 1995 .

[32]  Philip Cunningham,et al.  Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed , 2005 .

[33]  A. L. Sullivan,et al.  A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models , 2007, 0706.4130.

[34]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[35]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[36]  Jonathan D. Beezley Integrating high-resolution static data into WRF for real fire simulations , 2011 .

[37]  Carol A. Gotway,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[38]  F. A. Albini,et al.  Response of Free-Burning Fires to Nonsteady Wind , 1982 .

[39]  Stuart Matthews,et al.  Simple models for predicting dead fuel moisture in eucalyptus forests , 2010 .

[40]  Janice L. Coen,et al.  A Coupled AtmosphereFire Model: Convective Feedback on Fire-Line Dynamics , 1996 .

[41]  Patricia L. Andrews,et al.  Introduction to wildland fire, 2nd edition revised , 1996 .

[42]  Patricia L. Andrews,et al.  Introduction To Wildland Fire , 1984 .

[43]  M. Finney Fire growth using minimum travel time methods , 2002 .

[44]  G. Luderer,et al.  The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus , 2006 .

[45]  Jonathan D. Beezley,et al.  Assimilation of Perimeter Data and Coupling with Fuel Moisture in a Wildland Fire-Atmosphere DDDAS , 2012, ICCS.

[46]  Janice L. Coen,et al.  A Coupled Atmosphere-Fire Model: Role of the Convective Froude Number and Dynamic Fingering at the Fireline , 1996 .

[47]  W. Mell,et al.  A physics-based approach to modelling grassland fires , 2007 .

[48]  S. Krueger,et al.  The importance of low‐level environmental vertical wind shear to wildfire propagation: Proof of concept , 2013 .

[49]  Jonathan D. Beezley,et al.  Real time simulation of 2007 Santa Ana fires , 2012, 1202.3209.

[50]  J. Mandel,et al.  Data assimilation of fuel moisture in WRF-SFIRE , 2013, 1309.0159.

[51]  A. Sullivan A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models , 2007, 0706.3074.

[52]  Matthew F. McCabe,et al.  Large eddy simulation of atypical wildland fire spread on leeward slopes , 2013 .

[53]  Tom Beer,et al.  The interaction of wind and fire , 1991 .

[54]  Martin Vejmelka,et al.  Data assimilation of dead fuel moisture observations from remote automated weather stations , 2014 .

[55]  M. Fromm,et al.  Violent pyro‐convective storm devastates Australia's capital and pollutes the stratosphere , 2006 .

[56]  Van Wagner Equations and FORTRAN program for the Canadian Forest Fire Weather Index System , 1985 .

[57]  R. M. Nelson Water Relations of Forest Fuels , 2001 .